

Duplex/Simplex

Mobile
Scanner

Development
Kit

 2

Document Capture Technologies Inc.

Duplex/Simplex

Mobile Scanner Development Kit

 Document Capture Technologies Inc.
1798 Technology Drive, Suite 178 • San Jose CA 95110

Phone 408.436.9888 • Fax 408.436.6151
www.docucap.com

sdkresources@docucap.com

http://www.docucap.com/

 3

Table of Contents

INTRODUCTION ... 6
Package Contents ... 6
Requirements ... 6
Scanner Installation .. 6

TECHNICAL OVERVIEW ... 7

Including the DLL in Your Application ... 7

Using the API .. 8
Initializing the Interface ... 8
Calibrate the Scanner ... 9
Setup Parameters for Scanning .. 10
Check for Paper ... 11
Scan a page .. 12
Feed the Paper out .. 14
Close the Interface ... 15

Typical Program Flow Diagram .. 16

Calling API Functions From Multiple Processes ... 17

About Calibration ... 17

Debugging .. 18

Image Spooling .. 18

FUNCTION REFERENCE ... 20

SI_OpenInterface .. 20

SI_CloseInterface .. 22

SI_IsCalibrated ... 23

SI_Calibrate .. 24

SI_Clean .. 26

SI_GetScannerStatus .. 28

SI_GetPaperStatus ... 29

SI_GetButtonStatus .. 30

SI_GetProperty ... 32

 4

SI_SetProperty .. 33

SI_StartScan .. 34

SI_ReadImageData ... 35

SI_EndScan ... 37

SI_Feed .. 38

SI_FeedPaperOut ... 40

SI_Diagnostic... 42

SI_GetEvent .. 44

SI_Reset ... 45

SI_GetLastError ... 46

SI_GetLastErrorText ... 47

PROPERTIES ... 49

Functions ... 49

Values and Containers.. 51
SIValue .. 51
SISingle .. 52
SIRange .. 52
List ... 53
SIArray .. 54

Retrieving Property Values .. 54

Setting Property Values.. 55

PROPERTY REFERENCE ... 60
SIP_BITS_PER_CHANNEL ... 61
SIP_BITS_PER_PIXEL .. 61
SIP_BRIGHTNESS ... 62
SIP_CHANNEL_ORDER ... 62
SIP_CONTRAST ... 63
SIP_DESCREEN_ENABLED... 63
SIP_DROPOUT_COLOR ... 64
SIP_DUPLEX_ENABLED ... 64
SIP_EOP_DETECT_ENABLED .. 65
SIP_EOP_DETECT_OFFSET... 66
SIP_FEED_DIRECTION .. 67
SIP_FEED_RATE ... 67
SIP_GAMMA .. 68
SIP_HIGHLIGHT .. 69
SIP_LED_INDICATOR1 .. 70

 5

SIP_LED_INDICATOR2 .. 70
SIP_LINE_WIDTH_IN_BYTES ... 70
SIP_LUT_BLUE ... 71
SIP_LUT_GREEN ... 71
SIP_LUT_GRAY ... 71
SIP_LUT_RED .. 71
SIP_MAX_SCAN_TIME_IN_SEC... 72
SIP_OPTICAL_RESOLUTION .. 72
SIP_OPTICAL_WIDTH_IN_PIXELS .. 73
SIP_PHOTOMETRIC_INTERPRETATION .. 73
SIP_PLANARCHUNKY ... 74
SIP_PREFEED_ENABLED .. 75
SIP_PREFEED_DELAY ... 75
SIP_PREFEED_DISTANCE ... 76
SIP_SCAN_LENGTH_IN_LINES .. 76
SIP_SCAN_MODE ... 77
SIP_SCAN_RATE ... 78
SIP_SCAN_WIDTH_IN_PIXELS .. 79
SIP_SHADOW .. 79
SIP_SPOOLER_ENABLED ... 80
SIP_THRESHOLD .. 81
SIP_USB_RATE ... 81
SIP_USB_SERIAL_NUMBER ... 82
SIP_XOFFSET .. 82
SIP_XRESOLUTION .. 83
SIP_YOFFSET .. 84
SIP_YRESOLUTION .. 84

 6

Introduction

The DCT Duplex/Simplex Mobile Scanner Development Kit provides an application

programming interface for controlling DCT scanners. This interface is implemented as a

dynamically linked library (DLL) for the Microsoft Windows platform. Through this interface,

application programs are able to easily perform scanner operations such as calibrating the

scanner, detecting paper, checking button state, and scanning pages in various scan modes and

resolutions. Control is provided for various parameters such as brightness, contrast, gamma,

highlight and shadow, and custom lookup tables.

By handling the low-level operation of the scanner hardware, DCT’s scanner API allows system

integrators to shorten development time and focus on application-specific development.

The DCT API DLL supports Microsoft Windows 7, Vista, XP, 2000.

Package Contents

 Documentation (including this file)

 DCT drivers for one or more scanner models.

 Header and library files.

 Sample application source code

 A Nondisclosure and Confidential Agreement

 Two support incidents through email or one support incident through telephone.

 Optional extra incident support through Sales

For questions or comments related to this SDK, please send email to

sdkresources@docucap.com.

Requirements

The DCT files are compatible with Microsoft Visual C/C++ 6.0, Microsoft Visual C/C++ .NET,

and later compilers. Compilers by other vendors may work but are not tested or supported.

Development with managed languages such as C# and Visual Basic .NET requires Microsoft

Visual Studio 2005 or later.

The recommended development system is Microsoft Windows 7, Vista, or XP.

Scanner Installation

Included in the SDK is a Windows INF file used to install the device driver for your scanner.

The driver must be installed before using the SDK. To install, follow these steps:

 7

1. Plug the scanner into the computer’s USB port. The MS-Windows New Hardware

Wizard should appear.

2. Direct the New Hardware Wizard to the folder where the DCT driver and INF file for

your scanner model is stored. Note that there are separate directories for the 32-bit and

64-bit versions of the driver.

3. A dialog may appear warning you that the driver has not passed Windows Logo

certification. You can just click OK to dismiss this dialog.

4. When the New hardware Wizard has completed, the driver is installed and ready for use.

You can immediately try one of the sample applications to confirm the scanner operation.

Technical Overview

The application programming interface is implemented within a single DLL file as a set of

exported, C-callable functions. The application calls the API functions to control the scanner,

scan images, and to read image data. The DCT DLL handles all low-level communication with

the scanner hardware through the Windows Still Image (STI) Interface.

All scan parameters can be queried and set by

means of “properties”. The application can query

the current scan parameters as well as the range of

valid values for the parameters. This offers

flexibility and allows the developer to avoid hard-

coding the scanner’s capabilities and limits within

the application.

The DLL provides no user interface elements; it

provides data only. The application should

implement its own user interface if needed.

Including the DLL in Your
Application

To build your application to work with the DCT DLL, do the following two steps.

1. Add the line

#include ”ScannerAPI.h”

Application

DCT Scanner

DLL

STI Driver

MS-Windows

Scanner Hardware

 8

at the top of each source file that makes use of the API. This file in turn includes the

header “PlatTypes.h” which must also be in the include file path.

2. If you intend to use implicit linking, include the library file (such as DPORT487.LIB for

the DocketPORT 487) as an additional dependency in the linker section of your project.

That will cause the DLL to be linked when the application is loaded. Alternatively, you can load

the DLL at run-time (explicit linking) using the Windows function LoadLibrary(), passing

the filename such as “DPORT487.dll” as a parameter (or whatever the library filename is for

the particular scanner model).

The library DLL filename to load for some scanner models:

Scanner model Library DLL filename

DocketPORT 487 DPORT487.DLL

DocketPORT 488 DPORT488.DLL

DocketPORT 467 DPORT467.DLL

DocketPORT 468 DPORT468.DLL

DocketPORT 667 DPORT667.DLL

DocketPORT 687 DPORT687.DLL

Using the API

Initializing the Interface

To use the scanner, you begin by calling the function SI_OpenInterface(). This

initializes the interface and must be called before any other functions. The parameter passed to

this function is a textual name of the scanner, which depends on the scanner model. (You can

find the text name in the addendum document for your particular scanner model.)

#include “ScannerAPI.h”

SIResult result;

result = SI_OpenInterface(“DocketPORT487”);

 9

The SI_OpenInterface() function also initializes the scanner hardware. If the return value

is SIR_SUCCESS, then the interface was opened successfully and the scanner initialized. If the

scanner is not connected, you’ll get an error result. For other possible return values, see

SI_OpenInterface() in the function reference.

When you’re finished using the scanner, you should call SI_CloseInterface() to close the

interface and clean up any resources.

Calibrate the Scanner

Normally you’ll want the user to calibrate the scanner before doing the first scan. You can check

to see if the scanner has been calibrated by calling SI_IsCalibrated(). This function

determines whether or not the scanner has been calibrated by checking for the presence of a

calibration data file on disk. See the SI_Calibrate() in the function reference for

information about this file.

SIResult result;

SICalibrationState calState;

result = SI_IsCalibrated(&calState);

if (result == SIR_SUCCESS)

{

if(calState == SI_FALSE)

{

// The scanner has not been calibrated.

// <Here you would check the paper status to make

// sure the calibration target is inserted.>

 // Perform the calibration.

 result = SI_Calibrate(SI_CT_DEFAULT, NULL);

 if (result == SIR_SUCCESS)

 {

 printf("Calibration completed successfully.\n");

 }

 else

 {

 printf("There was an error during calibration.\n");

 }

}

}

// Continue on to scan an image

 10

If SI_IsCalibrated() returns a result of SIR_NOT_CALIBRATED, the scanner has not yet

been calibrated. You can then call SI_Calibrate() to calibrate the scanner. The first

parameter passed specifies the type of calibration target that will be inserted. At this time, the

only valid parameter is SI_CT_DEFAULT. The SI_Calibrate() function will not return until

the calibration is finished or there is an error. The second parameter is an optional pointer to a

callback function. See the SI_Calibrate() function reference for more detail.

Setup Parameters for Scanning

The scan parameters are set prior to starting a scan by means of scanner properties. Properties

describe the parameters of a scan, such as resolution, scan window, scan mode, and the

brightness. Properties are much like TWAIN capabilities or WIA item properties. You can set

one property at a time. The API functions to allow you to read and write scanner properties are:

Getting and setting scanner properties are explained in more detail in the section on Properties.

In short, to find out the current setting of a property, you specify the property ID you want in the

SIProperty structure and then pass it to SI_GetProperty().

You can also use SI_GetProperty() to tell you which values are valid for a given property.

To set a given property, you need to fill out four members of a SIProperty structure and then

pass it to SI_SetProperty().

The following example sets the X resolution property to 100 DPI.

SIResult SI_GetProperty(SIProperty* pProperty);
SIResult SI_SetProperty(SIProperty* pProperty);

SIProperty prop;

SIResult result;

prop.propertyID = SIP_XRESOLUTION; // initialize the ID

result = SI_GetProperty(&prop); // Get the property

assert(result == SIR_SUCCESS); // make sure it succeeded

int32 currentRes = prop.list.current.iVal; // get the resolution value

 11

If the current value you tried to set is not one of the valid values, you’ll get an error result and

that property will not be changed. Therefore, it’s not possible to set invalid parameters. Before

you actually start the scan, you’ll know that all scan parameters are valid.

For more information on properties, and on reading and writing them, see the section on

Properties.

Check for Paper

Before starting a scan, you’ll normally want to check whether or not there is paper inserted. You

can to this by calling the function SI_GetPaperStatus(). The state of the paper sensor is

returned in the SIPaperStatus parameter.

The following example checks to see if paper is inserted. If not, it will display a message

prompting the user to insert the paper and hit a key.

SIProperty prop;

SIResult result;

// Initialize property fields

prop.propertyID = SIP_XRESOLUTION; // Set the property ID for X resolution

prop.containerType = SICON_LIST; // uses a list container

prop.itemType = SI_INT32; // Set the item type to 32-bit integer

prop.list.current.iVal = 100; // Set resolution to 100 DPI

// Set the property’s current value

result = SI_SetProperty(&prop);

assert(result == SIR_SUCCESS);

 12

Scan a page

Once all properties are set and there is paper in the scanner, you can begin the scan. To do this,

call SI_StartScan(), which takes no parameters. The scan will use the currently set

properties.

Once the scan has started, the page will begin to feed. You can then read image data using the

SI_ReadImageData() function. This function lets you read out a number of lines.

In the following code example, pLineBuffer is a pointer to buffer allocated by the

application to receive the image data. The size of this buffer can be determined by querying the

property SIP_LINE_WIDTH_IN_BYTES. This will tell you the number of bytes that are return for

SIResult result;

SIPaperStatus paperStatus;

// Check if the paper is in.

result = SI_GetPaperStatus(&paperStatus);

while(paperStatus == SI_PS_PAPER_OUT)

{

 printf("Insert paper and press any key to begin the scan.\n");

 // Wait for a keystroke

 while(!_kbhit())

 {};

 ch = _getch(); // pull in the character.

 // Check if the paper is in.

 result = SI_GetPaperStatus(&paperStatus);

 if(result != SIR_SUCCESS)

 {

 printf("Error getting paper status.\n");

 }

};

SIResult result;

result = SI_StartScan();

assert(result == SIR_SUCCESS);

 13

one line and thus how much buffer space you need to provide. This example requests at most 10

lines per call, so the buffer is large enough to hold 10 lines of data.

If you do not have the end-of-page detection feature enabled, then you can just read the number

of lines and stop, since you already know the number of lines that will be scanned. The example

uses the variable linesRemaining to read 1100 lines of data.

If you do have end-of-page detection enabled (by setting the SIP_EOP_DETECT_ENABLED

property) then you won’t know how many lines can be read. In this case you need to keep

reading lines until SI_ReadImageData() returns a result of SIR_ENDOFDATA. This

means that there are no lines left for the page.

int32 linesRemaining = 1100;

int32 linesToRead;

while(linesRemaining > 0)

{

linesToRead = (linesRemaining < 10) ? linesRemaining : 10;

// Read the image data

result = SI_ReadImageData(pLineBuffer, linesToRead, 0, &linesReturned);

if((result != SIR_SUCCESS) && (result != SIR_ENDOFDATA))

{

// Either there was an error, or we’ve read all the data.

linesRemaining = 0;

break;

}

if(linesReturned > 0)

{

// <Here, save the data to file, or copy to another buffer. >

linesRemaining -= linesReturned;

}

else

{

// Since 0 lines were returned, we’ve caught up to the scanner.

// Wait a bit for more data.

Sleep(10);

}

};

// End the scan

SI_EndScan();

 14

When you are done reading image data, call SI_EndScan() to end the scan for this page.

This can be called anytime after SI_StartScan() and you do not need to read all the image

data. When SI_EndScan() is called, the paper feeding will stop.

Note that only certain API functions are allowed to be called between the

SI_StartScan()/SI_EndScan() pair. These include:

SI_ReadImageData()

SI_GetPaperStatus()

SI_GetScannerStatus()

SI_GetButtonStatus()

Also, SI_ReadImageData() can only be called between the

SI_StartScan()/SI_EndScan() pair.

Since SI_GetPaperStatus()can be called during a scan, it’s possible to do your own end-

of-page detection by polling the paper status during a scan. This method is less accurate,

however, if spooling is enabled. You would also need to take into account the distance from the

paper sensor to image sensor. This is already done automatically if you allow the DLL to handle

end-of-page detection.

Feed the Paper out

When the scan is done, the paper may not be completely fed out of the scanner. This can depend

on the paper path of the particular scanner model.

You can feed the paper out using the SI_FeedPaperOut() function. This will feed the paper

until the paper sensor is cleared. The function will not return until the sensor is clear, or until

some maximum feed length has been reach without the sensor becoming clear.

SI_FeedPaperOut() will always feed the paper some minimum distance even if the sensor

is clear at the start. This is to make sure the paper path is clear, since there is usually some

distance after the sensor is clear until the paper path is clear. The distance depends on the scanner

model.

You can also feed paper arbitrarily without performing a scan using the SI_Feed() function.

This is useful for feeding the paper out when the user cancels the scan. Before calling

SI_Feed(),you need to set up properties that define the feed characteristics. You can set the

// Feed the paper out of the scanner.

SI_FeedPaperOut();

 15

length of the feed and perhaps also the feed direction if that property is supported in the given

scanner model. For more information on how to use SI_Feed(), refer to the function

reference.

Close the Interface

When you’re finished scanning, you must call SI_CloseInterface(). This will close the interface

and clean up any resources. After calling this function, you can no longer call any API functions

until SI_OpenInterface() is called again.

 16

Typical Program Flow Diagram

SI_OpenInterface()

Start

SI_GetPaperStatus()

SI_ReadImageData()

SI_EndScan()

SI_FeedPageOut()

Are there lines
 left to scan?

succeed

fail

SI_StartScan()

Wait for paper insert

Continue scanning?

SI_IsCalibrated()

SI_Calibrate()

no

yes

paper
out

paper
in

SI_SetProperty
SI_GetProperty

Done setting
scan properties?

no

yes

yes

no

End of data detected?
no

yes

Done

yes

no

 17

Calling API Functions From Multiple Processes

The DCT DLL can be used with multiple processes in which a separate instance of the DLL is

loaded for each process. At the lowest level, the DLL makes use of a globally unique mutex to

synchronize communication with the scanner over the USB bus. Thus, separate processes will

not conflict when calling API functions. Two processes could, for example, check the paper

sensor status at the same time. Since the synchronization is global, the two processes could exist

in separate user sessions. This also allows multiple processes to get and set scan properties

separately before starting a scan. Scan properties are not sent to the scanner hardware until the

scan is started. Therefore, if two processes are setting the resolution to different values, they will

not conflict with each other.

However, only one process at a time can perform a scan (or a feed). Once one process calls

SI_StartScan(), a second process cannot then call SI_StartScan() until the first process calls

SI_EndScan() to end the scan process. In such a case, the second process would get a result of

SIR_SCANNER_BUSY. This also applies to SI_Feed, SI_FeedPageOut() and SI_Calibrate.

The DLL is not thread-safe. If your application calls the DLL from more than one thread, you

should ensure that only one thread at a time calls it.

About Calibration

Due to normal differences in the image sensor from one scanner to the next, each scanner must

be calibrated. Calibration should be done before the first use, but it does not need to be done

before each use. Typically users only need to re-calibrate every few months or when the image

quality seems noticeably degraded. To learn how to start the calibration process from your

application program, see the section Calibrate the Scanner.

DocketPORT drivers also allow users to calibrate from the Windows Control Panel. With the

scanner plugged in, open the Windows Control Panel and double-click on the Scanners and

Cameras applet. Right-click on the scanner icon and select Properties. On Windows XP, this

opens the properties dialog. (There are slightly different ways to open the Properties dialog on

Vista and later platforms.) Select the Advanced tab. From here you can start calibration. Insert

the calibration target to the scanner in the direction indicated by the arrows and press the

Calibrate button. Calibration should normally take about 20-30 seconds. You can also calibrate

with a clean white sheet of paper if the calibration target is not available. Make sure the paper

width extends to the full width of the scanner opening and is at least as long as the calibration

target.

The result of calibration is a set of data, or a “profile”, corresponding to that scanner. The profile

data is not saved in the scanner itself but in a file on the host computer’s hard drive. Therefore, if

 18

you move the scanner from one computer to another, you will need to recalibrate the scanner.

This file is named Calibration.dat and on Windows XP you can find it at:

C:\Documents and Settings\All Users\Application Data\Docucap\<scanner model>\Calibration.dat

…where <scanner model> is the name of the scanner model, such as “DocketPORT487”. On Vista

and later platforms:

C:\ProgramData\DocuCap\<scanner model>\Calibration.dat

User accounts without administrator privilege will not be able to calibrate the scanner because

they will not have permission to overwrite the Calibration.dat file.

Debugging

When debugging your application, be aware that DocketPORT scanners incorporate a watchdog

function as a safety feature. This watchdog function is designed to disable power to the motor

when there has been no communication with the host computer for about 75 seconds. When

stepping through your program in a debugger, you may call the SI_StartScan function to begin a

scan but then stop on a breakpoint before calling SI_EndScan. If you pause at this breakpoint

longer than 75 seconds, the watchdog timer will timeout and the scan will be aborted. Further

calls to SI_ReadImageData, for example, will not cause the scan to continue. You can continue

on to call SI_EndScan and then begin another scan.

Image Spooling

The DCT DLL incorporates an image spooler. The spooler runs in a separate thread and, once

the scan is started, begins reading the image data from the scanner hardware and writing it to a

spool file on disk. This allows the scan to continue without stopping even when the application

does not read the image data in a timely manner.

Image spooling can be disabled if desired by setting a scan property. However, it’s then the

responsibility of the application to read image data quickly enough to prevent the scanner from

pausing when its buffer becomes full. If the scanner pauses, it is not an error and the scan can

continue normally once the application continues reading the data. But pausing can possibly

cause slight artifacts in the image, and stopping and starting may be less pleasant from the user’s

perspective. If the scanner is a duplex scanner, then the spooler must be enabled in order to read

both sides. If duplex is enabled and the spooler is not enabled, then only one side or the other can

be read.

 19

The name and location of the spool file depends on the user account and the operating system. It

is a temporary file; the name and location are recommended by the operating system. On

Windows systems, the file is typically stored in the user’s temp folder with a path like

 C:\Documents and Settings\<username>\Local Settings\Temp

Or if that can’t be used (such as on Windows 98SE, for example), then the file will be stored in

C:\Windows\temp. The file is created when the application calls SI_StartScan() and deleted

when the application calls SI_EndScan(). The filename is unique for each scan.

The spooler property will automatically be set as disabled if there is not enough disk space to

hold the image. Therefore, you should ensure there is enough disk space at least in the case of

duplex scanning, since the spooler must be enabled for duplex. If it is disabled with duplex

scanning, you will read incomplete image data.

 20

Function Reference

The scanner is controlled through a set of functions exported from the DLL. The functions are

callable from C or C++. All function names begin with the prefix “SI_”.

All API functions return a result code of type SIResult which is defined as:

The result code normally reports the success or failure of the function. Possible result codes are

defined in the ScannerAPI.h header file and begin with the prefix “SIR_”. In general, the code

SIR_SUCCESS is returned when a function completes successfully.

All API functions and callback functions use the C calling convention (__cdecl). In case you use

a different calling convention in your application’s compiler settings, you should specify the

function pointers with the SICALLTYPE macro. For example, you would define

SI_OpenInterface as:

Callback functions should use the SICALLBACK macro. See the SI_Calibrate or SI_Clean

functions for more information.

SI_OpenInterface

The SI_OpenInterface function opens and initializes the scanner interface for use. It must be

called before any other function.

SIResult SI_OpenInterface(

const char* pName

);

typedef uint32 SIResult;

typedef SIResult (SICALLTYPE* SI_OpenInterfaceProc)(const char* pName);

 21

Parameters

pName [in] A pointer to an ASCII string identifying the scanner to open. This

string is case-sensitive. The string is product-specific. For the exact string

to use for a given scanner, check the addendum document for that scanner

model.

Return Values

SIR_SUCCESS The scanner was opened successfully.

SIR_ALREADY_OPEN SI_OpenInterface has already been called

and the scanner interface is already open.

SIR_UNKNOWN_MODEL_NAME The string passed in with the pName

parameter was not recognized as a

supported model.

SIR_BAD_PARAMETER pName was NULL.

SIR_SCANNER_NOT_READY The scanner hardware could not be

detected. The scanner is not connected.

SIR_INITIALIZATION_FAILURE The scanner could not be opened and

initialized.

SIR_DEVICE_COMMUNICATION_ERROR There was a low-level error while trying to

communicate with the scanner. The driver

could not communicate with the scanner.

Remarks

SI_OpenInterface must be the first function that is called. It initializes the scanner and opens

the API for use. The application should call SI_CloseInterface when the scanner is not longer

needed.

See Also

SI_CloseInterface

 22

SI_CloseInterface

This SI_CloseInterface function closes the scanner API and frees resource used by the scanner.

It is the complementary function to SI_OpenInterface.

Parameters

None.

Return Values

SIR_SUCCESS The scanner interface was closed successfully.

SIR_INTERFACE_NOT_OPEN The scanner interface is not open. SI_OpenInterface

was not called.

Remarks

SI_CloseInterface must be called before the DLL is unloaded to free resources. After calling

SI_CloseInterface, no other functions can be called (until SI_OpenInterface is called again).

See Also

SI_OpenInterface

SIResult SI_CloseInterface();

 23

SI_IsCalibrated

The SI_IsCalibrated function determines whether or not the scanner has been calibrated.

Parameters

pState [out] On successful return, *pState is set to SI_TRUE if the scanner is

calibrated, SI_FALSE if the scanner is not calibrated.

Return Values

SIR_SUCCESS The calibration state was returned successfully. The

value pointed to by pState has been set.

SIR_BAD_PARAMETER The pState parameter was NULL.

SIR_INTERFACE_NOT_OPEN The scanner interface is not open. SI_OpenInterface

was not called.

Remarks

To verify that calibration has been done, SI_IsCalibrated checks for the existence of a

calibration data file on disk. See SI_Calibrate for more info.

See Also

SI_Calibrate

SIResult SI_IsCalibrated(

SICalibrationState *pState

);

 24

SI_Calibrate

The SI_Calibrate function performs calibration on the scanner.

Parameters

target [in] A value that identifies the specific target that is inserted in the

scanner. This value is model-specific. See Remarks.

 Possible values for this parameter are:

SI_CT_DEFAULT The scanner will perform the default calibration

procedure. The calibration procedure will auto-

detect the target depending on the model.

pProgressCallback [in] A pointer to a user function that will be called periodically

during the calibration process to report the progress and to allow

the application to cancel the calibration. This parameter can be set

to NULL if no callback if needed. See Remarks for more details.

Return Values

SIR_SUCCESS The scanner was calibrated successfully.

SIR_CALIB_WHITE_TARGET The scanner calibrated successfully assuming

the target was a white-only target. This will be

returned when the calibration process is able

to auto-detect the target type, and it detected

that the target was white-only.

SIR_NOT_CALIBRATED The scanner could not be calibrated.

SIResult SI_Calibrate(

uint32 target,

ProgressCallbackPtr pProgressCallback

);

 25

SIR_BAD_PARAMETER The value of the target parameter was not

valid.

SIR_USER_CANCELLED A callback function was specified in

pProgressCallback and that callback returned

SI_FALSE to cancel the calibration process.

SIR_FILESYSTEM_ACCESS_DENIED The file system did not allow access to the

calibration file.

SIR_SCANNER_BUSY The scanner is busy and cannot perform

calibration.

SIR_INTERFACE_NOT_OPEN The scanner interface is not open.

SI_OpenInterface was not called.

SIR_DEVICE_COMMUNICATION_ERROR There was a low-level error while trying to

communicate with the scanner. The driver

could not communicate with the scanner.

Remarks

For scanner models that can use more than one possible calibration target—for example, black &

white or white-only—the target parameter can be set by the application to specify which target is

inserted. This parameter is therefore model-specific. Some models have only one possible target

and so this parameter is ignored. Some models can accept more than one target but the

calibration process can auto-detect which target is inserted. In such a case, you should pass

SI_CT_DEFAULT as the target parameter.

If the pProgressCallback parameter is set to NULL, the SI_Calibrate function will not return

until calibration is completed or an error occurred. The time to complete calibration may vary

depending on the scanner model.

If the pProgressCallback parameter is not NULL, it must point to a function that will be called

during the calibration process to report the percentage complete. The function must have the

following prototype:

This function will be called with the percentComplete parameter indicating the progress of the

calibration as a percentage (from 0 to 100). To allow the calibration to continue, you must return

SI_TRUE. If SI_FALSE is returned, the calibration will be aborted and the SI_Calibrate

int32 SICALLBACK ProgressCallback(uint32 percentCompleted);

 26

function will return SIR_USER_CANCELLED. (Remember that if you are using C++, the

callback function must be static.)

Note that after calling SI_Calibrate, all properties will be reset to their default values.

Calibration data is stored in a file named Calibration.dat. The location of this file on disk

depends on the operating system. On Windows systems, the file is stored in the folder indicated

by the Windows API function SHGetFolderPath() using the folder ID

CSIDL_COMMON_APPDATA. Therefore, the file will exist in a location common to all users on

the computer. The file will normally be placed in a subfolder of that location based on the

scanner model name. This folder will be created when SI_OpenInterface is called if it does not

already exist, provided that the user has sufficient permission. The SI_IsCalibrated function

will check for the existence of this file to determine if the scanner has been calibrated or not. The

administrator of the system can set the permissions of the file to prevent writing by other users if

those users should not be allowed to calibrate the scanner.

See Also

SI_IsCalibrated

SI_Clean

The SI_Clean function performs a back-and-forth feeding motion to clean the glass of the image

sensor module when special cleaning paper is used.

Parameters

pProgressCallback [in] A pointer to a user function that will be called periodically

during the cleaning process to report the progress and to allow the

application to cancel the operation. This parameter can be set to

SIResult SI_Clean(

ProgressCallbackPtr pProgressCallback

);

 27

NULL if no callback if needed. See Remarks for more details.

Return Values

SIR_SUCCESS The cleaning process completed successfully.

SIR_USER_CANCELLED A callback function was specified in

pProgressCallback and that callback returned

SI_FALSE to cancel the cleaning process.

SIR_SCANNER_BUSY The scanner is busy and cannot perform

cleaning.

SIR_INTERFACE_NOT_OPEN The scanner interface is not open.

SI_OpenInterface was not called.

SIR_DEVICE_COMMUNICATION_ERROR There was a low-level error while trying to

communicate with the scanner. The driver

could not communicate with the scanner.

Remarks

Before calling the SI_Clean function, you must check the paper sensor (see

SI_GetPaperStatus) make sure the user has inserted the special cleaning paper. SI_Clean does

not check for paper.

If the pProgressCallback parameter is set to NULL, the SI_Clean function will not return until

cleaning is completed or an error occurred. The time to complete cleaning may vary depending

on the scanner model.

If the pProgressCallback parameter is not NULL, it must point to a function that will be called

during the cleaning process to report the percentage complete. The function must have the

following prototype:

This function will be called with the percentComplete parameter indicating the progress of the

cleaning process as a percentage (from 0 to 100). To allow the cleaning to continue, you must

return SI_TRUE. If SI_FALSE is returned, the cleaning will be aborted and the SI_Clean

int32 SICALLBACK ProgressCallback(uint32 percentCompleted);

 28

function will return SIR_USER_CANCELLED. (Remember that if you are using C++, the

callback function must be static.)

SI_GetScannerStatus

The SI_GetScannerStatus returns information about the current status of the scanner.

Parameters

pScannerStatus [out] A pointer to an SIScannerStatus variable which, upon

successful return, is filled with a code indicating the scanner’s

current status. Possible values reported are:

SI_SS_OFFLINE The scanner is not available.

SI_SS_ONLINE_READY The scanner is online and ready to

scan.

SI_SS_ONLINE_BUSY The scanner is online but is busy and

cannot scan. This can occur if the

scanner is currently scanning in

another process.

Return Values

SIR_SUCCESS The scanner status was obtained successfully.

SIR_BAD_PARAMETER The pScannerStatus pointer was NULL.

SIR_INTERFACE_NOT_OPEN The scanner interface is not open. SI_OpenInterface

was not called. The status cannot be determined

SIResult SI_GetScannerStatus(

SIScannerStatus *pScannerStatus

);

 29

Remarks

SI_GetScannerStatus can be called just prior to SI_StartScan to determine if the scanner is

ready to scan. However, it is not strictly necessary to call SI_GetScannerStatus since

SI_StartScan will return an appropriate error if the scanner is not ready for any reason. The best

use of this function might be to immediately alert the user that the cable has been unplugged

rather than wait until the next scan. In that case you could poll this function.

This function will not return SIR_DEVICE_COMMUNICATION_ERROR since if there is any

problem communicating with the scanner, the status will be considered SI_SS_OFFLINE and the

function will return SIR_SUCCESS.

See Also

SI_GetPaperStatus, SI_GetButtonStatus

SI_GetPaperStatus

The SI_GetPaperStatus indicates whether or not paper is inserted into the scanner.

Parameters

pPaperStatus [out] A pointer to an SIPaperStatus variable which, upon

successful return, is filled with a code indicating whether or not

paper is present. Possible values reported are:

SI_PS_PAPER_IN Paper is inserted in the scanner.

SI_PS_PAPER_OUT There is no paper in the scanner.

SIResult SI_GetPaperStatus(

SIPaperStatus *pPaperStatus

);

 30

Return Values

SIR_SUCCESS The scanner status was obtained

successfully.

SIR_BAD_PARAMETER The pPaperStatus pointer was NULL.

SIR_INTERFACE_NOT_OPEN The scanner interface is not open.

SI_OpenInterface was not called. The

paper status cannot be determined.

SIR_DEVICE_COMMUNICATION_ERROR There was a low-level error while trying to

communicate with the scanner. The driver

could not communicate with the scanner.

Remarks

SI_GetPaperStatus can be called just prior to SI_StartScan to determine if there is paper in the

scanner before starting a scan. SI_StartScan does not required that there be paper in the scanner,

so it is up to the application to check for paper and only call SI_StartScan once paper is present.

SI_GetPaperStatus can be called at any time after SI_OpenInterface is called, even during

scanning, between calls to SI_ReadImageData. Using it this way, one can detect when the end

of page has been reached. However, that method can be inaccurate since the image is normally

spooled to disk during scanning. The recommended method is to use the

SIP_EOP_DETECT_ENABLED property.

See Also

SI_GetScannerStatus, SI_GetButtonStatus

SI_GetButtonStatus

The SI_GetButtonStatus indicates whether or not paper is inserted into the scanner.

SIResult SI_GetButtonStatus(

uint32 buttonNumber,

SIButtonStatus *pButtonStatus

);

 31

Parameters

buttonNumber [in] A zero-based value indicating which button to check. The first

button is 0, second button 1, and so forth. This value must be set

even if there is only a single button available.

pButtonStatus [out] A pointer to an SIButtonStatus variable which, upon

successful return, is filled with a code indicating whether or not the

button is pressed. Possible values reported are:

SI_BS_UP The button is not pressed.

SI_BS_DOWN The button is pressed.

Return Values

SIR_SUCCESS The scanner status was obtained

successfully.

SIR_BAD_PARAMETER The pButtonStatus pointer was NULL.

SIR_INTERFACE_NOT_OPEN The scanner interface is not open.

SI_OpenInterface was not called. The

button status cannot be determined

SIR_DEVICE_COMMUNICATION_ERROR There was a low-level error while trying to

communicate with the scanner. The driver

could not communicate with the scanner.

Remarks

SI_GetButtonStatus can be called at any time after SI_OpenInterface is called, even during

scanning, between calls to SI_ReadImageData.

See Also

SI_GetScannerStatus, SI_GetPaperStatus

 32

SI_GetProperty

The SI_GetProperty function retrieves information about a specified scanner property. Examples

of scanner properties are scan width and length, scan mode, and resolution.

Parameters

pProperty [in-out] A pointer to an SIProperty structure. The propertyID

member of this structure must be set to the ID of the property to

retrieve.

Return Values

SIR_SUCCESS The property information was obtained

successfully.

SIR_BAD_PARAMETER The pProperty pointer was NULL.

SIR_PROPERTY_UNSUPPORTED The property ID set in the SIProperty structure

was not one of the supported IDs for this

scanner.

SIR_INTERFACE_NOT_OPEN The scanner interface is not open.

SI_OpenInterface was not called.

Remarks

Upon successful completion of the function, this structure pointed to by pProperty will be filled

out with relevant information about that property, including the current value and valid values.

See the section on Properties for more information on getting and setting properties and a list of

scanner properties that can be queried.

SIResult SI_GetProperty(

SIProperty* pProperty

);

 33

See Also

SI_SetProperty

SI_SetProperty

The SI_SetProperty function is used to set properties (scan parameters) used in scanning.

Examples of scanner properties are scan width and length, scan mode, and resolution.

Parameters

pProperty [in] A pointer to an SIProperty structure. Four fields of the

property must be set:

 propertyID

 containerType

 itemType

 the current value (within the appropriate container)

Return Values

SIR_SUCCESS The scanner status was obtained successfully.

SIR_BAD_PARAMETER The pProperty parameter was NULL.

SIR_PROPERTY_UNSUPPORTED The property ID set in the SIProperty structure

was not one of the support IDs.

SIR_PROPERTY_INVALID_VALUE One or more of the fields in the pProperty

structure were invalid or out of range. Use

SI_GetProperty to find valid values.

SIResult SI_SetProperty(

SIProperty* pProperty

);

 34

SIR_INTERFACE_NOT_OPEN The scanner interface is not open.

SI_OpenInterface was not called.

Remarks

Upon successful completion of the function, the property will be set to the new value. As a

result, other properties may have changed. The application can use SI_GetProperty to check for

any updated values.

See the section on Properties for more information on getting and setting properties and a list of

scanner properties that can be set.

See Also

SI_GetProperty

SI_StartScan

The SI_StartScan function initiates a scan using the scan parameter set up in SI_SetProperty.

Parameters

None.

Return Values

SIR_SUCCESS The scan was initiated status was obtained

successfully.

SIResult SI_StartScan();

 35

SIR_SCANNER_BUSY The scanner is busy and cannot scan.

Another process may currently be

scanning.

SIR_INTERFACE_NOT_OPEN The scanner interface is not open.

SI_OpenInterface was not called.

SIR_DEVICE_COMMUNICATION_ERROR There was a low-level error while trying to

communicate with the scanner. The driver

could not communicate with the scanner.

Remarks

The SI_StartScan function returns immediately after the scan was started. The application can

then call SI_ReadImageData to begin retrieving the image data.

To end the scan that was started, the application must call SI_EndScan.

The API functions SI_Feed and SI_FeedPaperOut cannot be called between SI_StartScan and

SI_EndScan. Attempting to call these functions at that time will result in a

SIR_SCANNER_BUSY error.

See Also

SI_ReadImageData, SI_EndScan

SI_ReadImageData

The SI_StartScan function initiates a scan using the scan parameter set up in SI_SetProperty.

Parameters

SIResult SI_ReadImageData(

uint8 *buffer,

uint32 numberOfLinesToRead,

uint32 pageNumber,

uint32 *numberOfLinesReturned

);

 36

buffer [out]A pointer to a buffer to hold the image data. The size of

the buffer required can be determined from the scanner

property SIP_LINE_WIDTH_IN_BYTES, which gives the length

in bytes of one line. Therefore the buffer size in bytes must

be (numberOfLinesToRead *
SIP_LINE_WIDTH_IN_BYTES).

numberOfLinesToRead [in] The number of lines requested.

pageNumber [in] For single-sided scanners, this must always be 0. For

double-sided scanners, set this to 0 to read data from the front

and 1 to read data from the back.

numberOfLinesReturned A pointer to a uint32 variable that will be set to the number

of lines actually returned. This may be less than the number

requested.

Return Values

SIR_SUCCESS The function returned successfully with

zero or more lines in the buffer.

SIR_BAD_PARAMETER One or more of the parameters were

invalid.

SIR_INTERFACE_NOT_OPEN The scanner interface is not open.

SI_OpenInterface was not called.

SIR_ENDOFDATA There is no more data for the specified

page.

SIR_DEVICE_COMMUNICATION_ERROR There was a low-level error while trying to

communicate with the scanner. The driver

could not communicate with the scanner.

Remarks

The value returned in numberOfLinesReturned may be zero. This does not mean that there is no

more data. It may only mean that the application has caught up to the scanner and there is no new

data available yet. When there is no more image data for the page, SIR_ENDOFDATA will be

 37

returned. If the property SIP_EOP_DETECT_ENABLED is supported and is enabled,

SIR_ENDOFDATA will be return when the end of page is detected. In this case,

numberOfLinesReturned will be zero. Further calls to SI_ReadImageData will return a result of

SIR_ENDOFDATA with numberOfLinesReturned set to zero.

If the property SIP_EOP_DETECT_ENABLED is supported and is not enabled, then the scan

length is fixed. That is, SI_ReadImageData will not return SIR_ENDOFDATA until the

number of lines specified in the SIP_SCAN_LENGTH_IN_LINES property is returned.

Therefore, in this case, the application does not need to check for SIR_ENDOFDATA.

For duplex scanners, the front and back pages can be read in any order. It’s not necessary that

you read all lines of one page before you read lines from the other page. For example, you can

read 10 lines from page 0, then 10 lines from page 1, then 10 more lines from page 0 again.

However, lines can only be read once and are read sequentially—you cannot move the “file

pointer” back to re-read lines. In order to read both the front and back pages correctly, the

spooler must be enabled (See the SIP_SPOOLER_ENABLED), which it is by default. So you

don’t need to specifically enable it.

See Also

SI_StartScan, SI_EndScan

SI_EndScan

The SI_EndScan function terminates a scan that was started by calling SI_StartScan.

Parameters

None.

Return Values

SIResult SI_EndScan();

 38

SIR_SUCCESS The scan was ended successfully.

SIR_INTERFACE_NOT_OPEN The scanner interface is not open.

SI_OpenInterface was not called.

SIR_SCANNER_BUSY The scanner is busy and cannot feed.

Another process may currently be

scanning.

SIR_DEVICE_COMMUNICATION_ERROR There was a low-level error while trying to

communicate with the scanner. The driver

could not communicate with the scanner.

Remarks

The SI_EndScan function may be called anytime after SI_StartScan; it is not necessary to read

all the image data. When called, the scan is immediately stopped. The paper feeding stops. The

paper is not fed out of the scanner. To feed the paper out, call the SI_FeedPaperOut function.

After calling SI_EndScan, the SI_ReadImageData function may no longer be called (until the

next scan).

Calling SI_EndScan while a scan is not is progress does not result in an error.

See Also

SI_StartScan, SI_ReadImageData

SI_Feed

The SI_Feed function feeds the paper a specified distance without performing a scan.

 39

Parameters

None.

Return Values

SIR_SUCCESS The function performed the feed

successfully.

SIR_INTERFACE_NOT_OPEN The scanner interface is not open.

SI_OpenInterface was not called. The

paper status cannot be determined.

SIR_SCANNER_BUSY The scanner is busy and cannot feed.

Another process may currently be

scanning.

SIR_DEVICE_COMMUNICATION_ERROR There was a low-level error while trying to

communicate with the scanner. The driver

could not communicate with the scanner.

Remarks

The distance and direction of the feed are determined by three properties which must be set

before calling SI_Feed.

SIP_YRESOLUTION The Y resolution is set so that there is some context to the number

of lines specified in SIP_YOFFSET. That is, feeding 100 lines at a

resolution of 300 DPI means to feed the paper 1/3 of an inch.

SIP_YOFFEST This property specifies the number of lines to feed the paper. The

lines are in terms of resolution specified in the

SIP_YRESOLUTION property.

SIResult SI_Feed();

 40

SIP_FEED_DIRECTION This property specifies the direction the paper will be moved. This

property may or may not exist for a given model scanner. If it does

not, then the paper will always feed forward.

The SI_Feed function does not return until the paper has been fed the specified distance (or an

error has occurred).

SI_Feed always feeds the length specified regardless of the state of the paper sensor. To feed the

paper until the paper sensor is clear, use SI_FeedPaperOut.

SI_Feed cannot be called between SI_StartScan and SI_EndScan. Attempting to call it at that

time will result in a SIR_SCANNER_BUSY error.

See Also

SI_FeedPaperOut

SI_FeedPaperOut

The SI_FeedPaperOut function feeds the paper until the paper sensor is clear.

Parameters

None.

Return Values

SIR_SUCCESS The function performed the feed

successfully.

SIResult SI_FeedPaperOut();

 41

SIR_INTERFACE_NOT_OPEN The scanner interface is not open.

SI_OpenInterface was not called. The

paper status cannot be determined.

SIR_SCANNER_BUSY The scanner is busy and cannot feed.

Another process may currently be

scanning.

SIR_DEVICE_COMMUNICATION_ERROR There was a low-level error while trying to

communicate with the scanner. The driver

could not communicate with the scanner.

Remarks

The direction of the feed is determined by one property which must be set before calling

SI_FeedPaperOut.

SIP_FEED_DIRECTION This property specifies the direction the paper will be moved. This

property may or may not exist for a given model scanner. If it does

not, then the paper will always feed forward.

The SI_FeedPaperOut function will not stop feeding exactly when the paper sensor is cleared.

Instead it will feed a bit further to make sure the paper is clear of the scanner mechanism. This

distance depends on the particular model since the distance required to clear a page depends on

the hardware.

If there is no paper detected when SI_FeedPaperOut is first called, SI_FeedPaperOut will still

feed the paper some minimum distance to ensure the paper is clear from the scanner mechanism.

The SI_FeedpaperOut function does not return until the paper has been fed out or until the

maximum feed length has been reached (or an error has occurred). The maximum feed length is

defined as the maximum valid value of the property SIP_YOFFSET.

SI_FeedPaperOut cannot be called between SI_StartScan and SI_EndScan. Attempting to call

it at that time will result in a SIR_SCANNER_BUSY error.

See Also

SI_Feed

 42

SI_Diagnostic

The SI_Diagnostic function performs diagnostic tests on the scanner hardware.

Parameters

test [in] An ID value that specifies which test to perform. See the

Remarks section for a list of possible values.

pDiagInfo [in] A pointer to a diagnostic info structure. The structure

passed in depends which test is specified in the test

parameter. This structure may contain both input and output

values for the diagnostic test. See the Remarks section for

more info.

Return Values

SIR_SUCCESS The test result was returned successfully.

SIR_BAD_PARAMETER The test specified was unknown or the

pDiagInfo parameter was NULL.

SIR_INTERFACE_NOT_OPEN The scanner interface is not open.

SI_OpenInterface was not called.

SIResult SI_Diagnostic(

SIDiagTest test,

void* pDiagInfo

);

 43

SIR_DEVICE_COMMUNICATION_ERROR The test could not be performed because

there was a low-level error while trying to

communicate with the scanner.

Remarks

The second parameter pDiagInfo is a pointer to structure; the particular structure passed in

depends on the test being performed. The following table lists the valid tests and the structures

which must be passed in for each test. The structures are defined in the ScannerAPI.h header file.

The comments also describe any structure members which must be set up before calling the

function, as well as result values returned in structure members.

test pDialogInfo Comment
SI_DIAG_HW_PRESENCE SIDiagHwPresenceInfo Output: the result of the test is returned in

the result member variable. Possible

results are:

 SI_DIAG_PASS – the scanner is

connected.

 SI_DIAG_FAIL – the scanner is not

connected.
SI_DIAG_READ_PERFORMANCE SIDiagReadPerfInfo Input: The caller must set the

readLengthInKB member variable to the

data length in KB to read. Valid values are

between 1 and 100 KB.

Output: The total time in microseconds to

read the data from the scanner is returned in

the timeInMicroSec member variable.

The following is an example of calling SI_Diagnostic() to do a Read Performance test.

SIDiagReadPerfInfo diagReadPerfInfo;

// Specify a 20 KB data length to read.

diagReadPerfInfo.readLengthInKB = 20;

// Do the test.

SI_Diagnostic(SI_DIAG_READ_PERFORMANCE, &diagReadPerfInfo)

// Print the result.

printf(“The time to read %d KB was %d us.”,

diagReadPerfInfo.readLengthInKB,

diagReadPerfInfo.timeInMicroSec);

 44

SI_GetEvent

The SI_GetEvent function will interpret a USB interrupt code and translate it into a bit-flag

indicating the event or events that occurred. This function is normally used only by a driver that

handles USB interrupt events, such as a Windows STI driver.

Parameters

pEventInfo [in-out] A pointer to an SIEventInfo structure. The

eventDataSize and eventData structure fields must be filled

out before passing the structure. See Remarks for more detail.

Return Values

SIR_SUCCESS The event code was recognized and

successfully converted to test. The

eventName field of the pEventInfo

structure was filled with the event name.

SIR_BAD_PARAMETER The pEventInfo parameter was NULL.

SIR_INTERFACE_NOT_OPEN The scanner interface is not open.

SI_OpenInterface has not been called.

Remarks

When an event occurs in the scanner, such as a button press or paper sensor trigger, the scanner

will send a USB interrupt to the host computer. Included in the interrupt message may be one or

more bytes that indicate which event occurred. This information is not standard; it can be unique

SIResult SI_GetEvent(

SIEventInfo* pEventInfo

);

 45

to the scanner. Thus if you are writing a driver to handle this interrupt, you may not know which

scanner event occurred.

The SI_GetEvent function will translate the interrupt data into one or more bit flags indicating

which event occurred. To call this function, you must pass a pointer to an SIEventInfo structure.

This structure is defined in ScannerAPI.h as:

The caller must copy the data from the USB interrupt into the eventData array and also set the

eventDataSize field to the number of bytes in that array. If SI_GetEvent returns successfully, the

eventFlags field will have bits flags set indicating which event or events occurred. Possible

bitflags set are:

SIEVT_PAPER_IN The paper sensor was triggered. This indicates that the

paper was inserted.

SIEVT_BUTTON_DOWN The first scan button was pressed.

SIEVT_BUTTON2_DOWN The second scan button was pressed.

SIEVT_BUTTON3_DOWN The third scan button was pressed.

If the event data was not recognized, then the eventFlags field will be returned as 0. Some

scanners do not support USB interrupts. In this case, the eventFlags field will be returned as 0.

See Also

SI_Reset

#define MAX_EVENT_DATA_SIZE 20

typedef struct

{

 /// [in] The size in bytes of the data in the eventData array.

uint8 eventDataSize;

/// [in] The data bytes return by the scanner in the USB interrupt phase.

uint8 eventData[MAX_EVENT_DATA_SIZE];

/// [out] Bit flags that indicate which event(s) occurred.

uint32 eventFlags;

} SIEventInfo;

 46

The SI_Reset function resets the scanner to a known state.

Parameters

None.

Return Values

SIR_SUCCESS The scanner was reset successfully.

SIR_INTERFACE_NOT_OPEN The scanner interface is not open.

SI_OpenInterface was not called.

SIR_DEVICE_COMMUNICATION_ERROR The scanner could not be reset because

there was a low-level error while trying to

communicate with the scanner.

Remarks

SI_Reset should be used with caution. It will reset the scanner hardware regardless of whether a

scan is in progress, either in the current process or a different process. Resetting the hardware

will abort any scan or feed in progress.

In addition, all scan properties are set to their default values.

SI_GetLastError

The SI_GetLastError function returns the result of the most recently called API function.

SIResult SI_Reset();

SIResult SI_GetLastError();

 47

Parameters

None.

Return Values

The result that was returned by the most recent API function that was called.

Remarks

You typically do not need to use SI_GetLastError since the result codes are returned from the

functions themselves. SI_GetLastError is included for convenience and may be useful

depending on how your application is structured.

The interface does not need to be open to call SI_GetLastError.

See Also

 SI_GetLastErrorText

SI_GetLastErrorText

The SI_GetLastError function returns the result of the most recently called API function.

Parameters

ppErrorText [out] A pointer to a char pointer that will be set to point to a

null-terminated text string that describes the last API result

SIResult SI_GetLastErrorText(char **ppErrorText);

 48

that occurred. Do not attempt to free the memory pointed to

by this pointer.

Return Values

SIR_SUCCESS This pointer to the text string was returned

successfully.

SIR_BAD_PARAMETER The ppErrorText parameter was NULL.

Remarks

You typically do not need to use SI_GetLastErrorText since the result codes are returned from

the functions themselves. SI_GetLastErrorText is included for convenience and may be useful

for displaying error messages.

The interface does not need to be open to call SI_GetLastErrorText.

See Also

 SI_GetLastError

 49

Properties

Properties are a flexible mechanism for setting and retrieving scan parameters. There are

properties for scan width, scan length, resolution, brightness, and other scanner parameters that

can be queried and controlled. Properties are analogous to capabilities in the TWAIN protocol or

to item properties in the Windows Image Acquisition protocol. However, DCT properties are

somewhat simpler since a smaller subset of features needs to be supported.

Functions

You can get or set properties using two functions of the API:

SIProperty is a structure defined as:

The propertyID field holds a property ID constant that specifies the property to set or get.

Examples of property IDs are SIP_XRESOLUTION and SIP_SCAN_WIDTH_IN_PIXELS. All

property ID constants begin with the prefix “SIP_”.

The containerType field is used to specify which type of container is used to store the property

values. The anonymous union contains structures for all possible container types. The

SIResult SI_GetProperty(SIProperty* pProperty);
SIResult SI_SetProperty(SIProperty* pProperty);

typedef struct

{

 uint16 propertyID; ///< a property ID constant.

 uint16 containerType; ///< a container type constant.

 uint16 itemType; ///< the data type the container holds.

 uint16 access; ///< SIACC_READWRITE or SIACC_READONLY.

 // containers

 union

 {

 SISingle single

 SIRange range;

 SIList list;

 SIArray array;

 };

} SIProperty;

 50

containerType field specifies which of these is being used. This is set by the DLL on return from

SI_GetProperty. It must also be set by the application before calling SI_SetProperty. Valid

values for containerType are:

SICON_SINGLE The property is a single value. A property with this container

type will normally be read-only, since there is only one possible

value. The exception is when the itemType is SI_BOOL, in

which case the valid range of values is understood to be either

SI_TRUE or SI_FALSE. When the itemType is SI_BOOL, the

property may be either read-only or read-write.

SICON_RANGE The property can be selected from a range of possible values.

This container includes a minimum and maximum value

allowed and also an increment.

SICON_LIST This property can be selected from a list of specific possible

values. The list of possible values is defined in the container.

SICON_ARRAY This property is an array of values.

The itemType field describes the data type of the value. This is set by the DLL on return from

SI_GetProperty. Valid values for itemType are:

SI_INT32 The value is a 4-byte signed integer.

SI_FLOAT32 The value is a 4-byte floating point value.

SI_STR The value is a pointer to a null-terminated ASCII string.

SI_BOOL The value is either SI_TRUE or SI_FALSE.

The access field specifies whether the application is allowed to change the current value of the

property. This is set by the DLL on return from SI_GetProperty. Possible values are:

SIACC_READONLY The current value cannot be set.

SIACC_READWRITE The current value can be set.

The access field is primarily of use when the container type is SICON_SINGLE and the item

type is SI_BOOL. In the current implementation of the DLL, access on non-bool single

containers is always SIACC_READONLY and access of all other containers is

SIACC_READWRITE. (In these cases, the access field is included for possible future use.)

 51

Values and Containers

SIValue

All values are stored in an SIValue structure (which is in turn stored in a container). Using a

union, SIValue can store any basic type used by properties.

The iVal and fVal members store integer and floating point values respectively. Typically, the

int32 type is used for all integer values for consistency.

The strVal is a pointer to a NULL-terminated ASCII string. Thus the string is not stored within

the property container itself. The pointer normally points to a statically allocated string in the

DLL memory.

The members piVal, psVal, pcVal, and pstrVal are used only in list and array containers,

described below. They are not used in SISingle and SIRange containers. They point to the list or

array itself. Using these fields helps to avoid the need for type casts.

typedef struct

{

union

 {

 int32 iVal; ///< integer value

 float32 fVal; ///< float value

 char* strVal; ///< string value

 int32 bVal; ///< Boolean. SI_TRUE or SI_FALSE

 int32* piVal; ///< pointer to integer

 int16* psVal; ///< pointer to short

 int8* pcVal; ///< pointer to character

 char** pstrVal; ///< pointer to string

 };

} SIValue;

 52

SISingle

An SISingle container uses the following structure.

This container holds a single value, the current field. Since there is no range of possible choices

for the value, it is a read-only value and cannot be changed (unless the itemType is SI_BOOL).

The access field will be SIACC_READONLY. The def field holds a default value which will

always be the same as the current value except when the itemType is SI_BOOL.

When the itemType is SI_BOOL, the application may set the current value. In this case, the

possible choices are understood to be SI_TRUE or SI_FALSE. So for SI_BOOL types, the

access field may be either SIACC_READONLY or SIACC_READWRITE. The def value might

not be the same as the current value if the current value was changed.

SIRange

An SIRange container uses the following structure:

This container can hold any value within a range defined by the minimum and maximum value

and divided up into equal-sized steps. The stepSize field specifies the size of the steps. So for

example, if the scanner’s width was defined and a range with minimum 0, maximum 1000 and

step size 10, then you could select widths of 0, 10, 20, 30,…, 990, 1000.

The current field holds the current value and the def field holds the default value.

typedef struct

{

 SIValue minimum;

 SIValue maximum;

 SIValue stepSize;

 SIValue def;

 SIValue current;

} SIRange;

typedef struct

{

 SIValue current;

 SIValue def;

} SISingle;

 53

List

An SIList container uses the following structure:

An SIList container defines a list of possible values from which the current value can be chosen.

Unlike an SIRange container, the items in the list are not necessarily spaced equally.

The items field holds a pointer to the item list. The type of pointer depends on the item type

specified in the itemType field of the property. For example, if the items type is SI_INT32, then

the pointer is stored in the piVal member of the SIValue structure. You could access the third

item in the list with the expression:

The current field stores the current item itself, not an index into the list of items (as TWAIN

does, for example). To set the current value to be the first item in the list, you would use the

expression:

In the case of a string type, the current value must match one of the string pointers in the items

list. It cannot be a different pointer to a string that happens match one in the list; that is, one that

would compare equally using the strcmp() library function. Therefore, if the item type is a string,

to set the current value to be the first item in the list you would use the expression:

The numItems field specifies the number of items in the list.

The def field holds the default value.

int32 thirdValue = prop.list.items.piVal[2];

prop.list.current.iVal = prop.list.items.piVal[0];

prop.list.current.strVal = prop.list.items.pstrVal[0];

typedef struct

{

 int32 numItems;

 SIValue current;

 SIValue def;

 SIValue items;

} SIList;

 54

SIArray

An SIArray container uses the following structure:

An SIArray container defines an array of items. The items field holds a pointer to the array

values. The type of pointer depends on the item type specified in the itemType field of the

property. For example, if the items type is SI_INT32, then the pointer is stored in the piVal

member of the SIValue structure. You could access the item at index 100 using the expression:

The numItems field specifies the number of items in the array. There is no default value for

arrays.

Retrieving Property Values

Retrieving a scanner property value can best be shown with a short example. To retrieve a

property, you need to set the propertyID member of the property to the ID you want to retrieve.

Property ID identifiers all begin with the prefix “SIP_”. Then call the SI_GetProperty function.

Upon return, the prop structure will be filled in with information for that property. You can

then examine the containerType field. This tells you which container structure the property info

is stored in. The itemType field will tell you which data type the value is, so you can access it

with the correct member of the Value structure.

typedef struct

{

 int32 numItems;

 SIValue items;

} SIArray;

int32 item100 = prop.array.items.piVal[100];

SIProperty prop;

SIResult result;

prop.propertyID = SIP_XRESOLUTION; // initialize the ID

result = SI_GetProperty(&prop); // Get the property

assert(result == SIR_SUCCESS); // make sure it succeeded

 55

In the above example, since the application examines the containerType field first, it can deal

with the property no matter which type of container was returned by SI_GetProperty. However,

if you’re developing an application for a specific model of scanner, you normally know the

container type and item type. Therefore you can avoid checking these and instead just write:

It’s up to the application developer. If you intend to develop an application to handle more than

one scanner model, and the models use different containers and item types, then you may want to

write the application code in a more abstract and flexible way. But in most cases, you can just

assume the container and item type once you know them for a particular property.

Setting Property Values

To set a property, you must specify the following four things in the property structure:

 The property ID in the propertyID field.

 The container type.

 The item type

 The new current value.

// The X resolution will always be an integer type.

assert(prop.itemType == SI_INT32);

// Check the container type and print out the current resolution

switch(prop.containerType)

{

 case SICON_SINGLE:

 printf("The current resolution is %d\n", prop.single.current.iVal);

 break;

 case SICON_LIST:

printf("The current resolution is %d\n", prop.list.current.iVal);

 break;

 case SICON_RANGE:

 printf("The current resolution is %d\n", prop.range.current.iVal);

 break;

 default:

 // You should never get here.

// An array container would not be used.

 break;

};

// Assume the X resolution will always be a list container and integer

// type.

assert((prop.containerType == SICON_LIST) && (prop.itemType == SI_INT32));

printf("The current resolution is %d\n", prop.list.current.iVal);

 56

All other fields will be ignored. This means, for example, that you cannot set the minimum or

maximum values of range types. Nor can you set the default value. All these are fixed by the

DLL.

The following example sets the X offset property (the left margin).

Instead of setting the container type and item type yourself, you could also have the DLL set

these by calling SI_GetProperty().

When you specify the item type to SI_SetProperty, the types must match the documented types

for that property. If they do not, SI_SetProperty will return an

SIR_PROPERTY_INVALID_VALUE error. The container type must also match, with the

exception that you can also use the SICON_SINGLE container to set the current value for

properties that are SICON_RANGE or SICON_LIST types. So, for example, even though the

SIProperty prop;

SIResult result;

// Initialize property fields

prop.propertyID = SIP_XOFFSET;

prop.containerType = SICON_RANGE;

prop.itemType = SI_INT32;

prop.range.current.iVal = 0;

// Set the property’s current value

result = SI_SetProperty(&prop);

assert(result == SIR_SUCCESS);

SIProperty prop;

SIResult result;

// Initialize property fields

prop.propertyID = SIP_XOFFSET;

// Get the property’s info

result = SI_GetProperty(&prop);

assert(result == SIR_SUCCESS);

// Set the property’s current value. Assume the previous call to

// SI_GetProperty() has already set the container type to range and

// the item type to integer.

prop.range.current.iVal = 0;

result = SI_SetProperty(&prop);

assert(result == SIR_SUCCESS);

 57

SIR_XOFFSET property shown below returns a SICON_RANGE container from

SI_GetProperty, you can use a SICON_SINGLE container to set its current value.

If you are developing for more than one scanner model, and you want to develop the application

in a flexible way, you can call SI_GetProperty to discover the container and item types and then

set the current value appropriately. The following example might be the case if you’re writing

code that handles two different scanners. One scanner fixes the X offset at 0 and uses the Single

container. The other allows a range of values and uses the range container.

SIProperty prop;

SIResult result;

// Initialize property fields

prop.propertyID = SIP_XOFFSET;

prop.containerType = SICON_SINGLE;

prop.itemType = SI_INT32;

prop.single.current.iVal = 0;

// Set the property’s current value

result = SI_SetProperty(&prop);

assert(result == SIR_SUCCESS);

 58

Again, as in retrieving properties, it’s usually not necessary to go to these lengths if you’re

developing for only one scanner model and you know the container and items types.

Note that when one property is changed by the application, it may result in a change of the

current values or valid ranges of other properties. For example, a scanner may have an allowable

scan width of 2592 pixels at 300 DPI resolution. If the application changes the resolution to 100

DPI, the allowable scan width may then be reduced to 864 pixels. In addition, if the current scan

width value was set higher than 864 pixels, it will be reduced to 864 to be within the valid width.

Therefore, after setting scan properties, the application should read back the relevant properties

that may have changed to confirm their values.

SIProperty prop;

SIResult result;

int32 newOffset = 100;

// Get the property’s info

prop.propertyID = SIP_XOFFSET;

result = SI_GetProperty(&prop);

assert(result == SIR_SUCCESS);

// Set the property’s current value.

switch(prop.containerType)

{

 case SICON_SINGLE:

 // Only one value of x Offset is allowed. So we can't set it.

printf("The X Offset %d can't be changed.\n", prop.single.current.iVal);

 break;

 case SICON_RANGE:

 // Check that the value is valid.

 if((newOffset >= prop.range.minimum.iVal) &&

 (newOffset <= prop.range.maximum.iVal) &&

 ((newOffset % prop.range.stepSize.iVal) == 0))

 {

 prop.range.current.iVal = newOffset;

 result = SI_SetProperty(&prop);

 assert(result == SIR_SUCCESS);

 printf("The X Offset value was changed to %d.\n", newOffset);

 }

 else

 {

 printf("The X Offset value is not valid for this property.\n");

 }

 break;

};

 59

For the purpose of these adjustments, properties have the following priority:

1. SIP_SCAN_MODE

2. SIP_BITS_PER_CHANNEL

3. SIP_XRESOLUTION, SIP_YRESOLUTION

4. SIP_XOFFSET, SIP_YOFFSET

5. SIP_SCAN_WIDTH_IN_PIXELS, SIP_SCAN_LENGTH_IN_LINES

As another example, suppose a scan has a maximum scan width of 2592 pixels at 300 DPI and

the current value is set to the maximum 2592. The X offset could then be set to 100. Then the

maximum and current scan width would be reduced to 2492. The current or maximum value for

scan width could not be set to 2592 and force the offset back to 0 because the X offset property

has higher priority.

 60

Property Reference

Not all scanner models will have all properties. Some properties may not be appropriate for the

given scanner’s capabilities. To programmatically find out if a scanner supports a given property,

you can call SI_GetProperty as shown:

Scanners typically have at least the following properties which are needed for basic scanning.

SIP_OPTICAL_RESOLUTION

SIP_OPTICAL_WIDTH_IN_PIXELS

SIP_XRESOLUTION

SIP_YRESOLUTION

SIP_BITS_PER_CHANNEL

SIP_BITS_PER_PIXEL

SIP_SCAN_MODE

SIP_YOFFSET

SIP_XOFFSET

SIP_SCAN_WIDTH_IN_PIXELS

SIP_SCAN_LENGTH_IN_LINES

SIP_LINE_WIDTH_IN_BYTES

You do not need to set all properties. You can ignore properties that you don’t care about or for

which the default value is fine. Normally you’ll want to set the basic properties like

SIP_SCAN_MODE or SIP_XRESOLUTION.

SIProperty prop;

SIResult result;

prop.propertyID = SIP_XRESOLUTION; // initialize the ID

result = SI_GetProperty(&prop); // Get the property

if(result == SIR_SUCCESS)

{

 printf("The property is supported.\n");

}

else if(result == SIR_PROPERTY_UNSUPPORTED)

{

 printf("The property is not supported.\n");

}

else

{

// some other error occurred.

}

 61

SIP_BITS_PER_CHANNEL

Description

The bit depth per color channel. For example, if a scan mode supports 24-bit color, then

this property value would be set to 8 since each of the red, green, and blue channels are 8-

bits deep.

Most often, this is a read-only value using a SICON_SINGLE container. But it may

possibly be writable and use a SICON_LIST container for a scanner that provides a

choice of bit depth, for example 4-bit or 8-bit grayscale.

Item Types

SI_INT32

Container Types

SICON_SINGLE

SICON_LIST

SIP_BITS_PER_PIXEL

Description

The number of bits per pixel. This includes all channels for scan modes with more than

one color channel.

Most often, this is a read-only value.

Item Types

SI_INT32

Container Types

SICON_SINGLE

 62

SIP_BRIGHTNESS

Description

Controls the brightness level of the image. For B&W scan mode, this is equivalent to

lowering the threshold.

Item Types

SI_INT32

Container Types

SICON_RANGE

SIP_CHANNEL_ORDER

Description

Specifies the order of color channels. Since most scanners provide data in RGB order,

this can be useful when saving to Windows Bitmap format which require BGR order.

Channel order applies only when SIP_PLANARCHUNKY property is

SI_PC_CHUNKY.

If the container is SICON_SINGLE, then the order cannot be changed.

Item Types

SI_INT32

Container Types

SICON_SINGLE

SICON_LIST

Values Allowed

SI_CO_RGB color channels are ordered red-green-blue

SI_CO_BGR color channels are ordered blue-green-red

 63

SIP_CONTRAST

Description

The contrast of the image.

The allowable range is centered on zero, with zero being the nominal value. Positive

values provide higher contrast and negative values lower contrast.

Item Types

SI_INT32

Container Types

SICON_RANGE

SIP_DESCREEN_ENABLED

Description

Specifies whether or not descreen processing is enabled. The descreen process will

reduce the moiré effects that result from scanning a screened target such as magazine or

newspaper image. When set to SI_TRUE, the descreen function is enabled. The default

value is SI_FALSE.

Item Types

SI_BOOL

Container Types

SICON_SINGLE

Values Allowed

SI_TRUE

SI_FALSE

 64

SIP_DROPOUT_COLOR

Description

Specifies the dropout color for scanning. The dropout color is the color that is not

scanned. This color will show up as white. It can be used in scanning forms for better

OCR processing.

This setting applies only to grayscale and B&W scan modes. It is ignored for color scan

mode.

Item Types

SI_INT32

Container Types

SICON_SINGLE

SICON_LIST

Values Allowed

SI_DO_NONE (default)

SI_DO_RED

SI_DO_GREEN

SI_DO_BLUE

SIP_DUPLEX_ENABLED

Description

Specifies whether or not duplex (double-sided) scanning is enabled. If this property does

not exist, then duplex scanning is not supported on the scanner. Single-sided scanners

will not have this property.

When set to SI_TRUE, the scanner will scan both sides of a page. This normally results

in a reduced scan speed compared to single-sided scanning.

 65

When this property is set to SI_TRUE, the SI_SPOOLER_ENABLED property will be

changed to SI_TRUE if it was previously set to SI_FALSE. This is because the spooler is

required to be enabled for duplex scanning.

See the SI_ReadImageData() function for information on reading image data from a

duplex scan.

Item Types

SI_BOOL

Container Types

SICON_SINGLE

Values Allowed

SI_TRUE

SI_FALSE

SIP_EOP_DETECT_ENABLED

Description

Enables end-of-page detection.

When set to SI_TRUE, the paper sensor will be monitored and the scan will stop when

the paper is clear. Actually, the scan will not stop as soon as the paper has cleared the

paper sensor, but rather as soon as it clears the image sensor which will be some time

later depending on the distance between paper sensor and image sensor and whether or

not duplex scanning is enabled.

When end-of-page detection is enabled, the application reads data normally, using

SI_ReadImageData(). The end of the data will be reached when SIR_ENDOFDATA is

returned from the function. See the SI_ReadImageData() function for more information.

When the end of the page is reached, the DLL will not feed the paper completely out of

the scanner. The application must call the SI_FeedPaperOut() function to do this.

 66

Even when end-of-page detect is enabled, a scanned page will never be longer than the

length specified in the SIP_SCAN_LENGTH_IN_LINES property. Thus, the value of

SIP_SCAN_LENGTH_IN_LINES should represent the maximum length you want to

scan.

Item Types

SI_BOOL

Container Types

SICON_SINGLE

Values Allowed

SI_TRUE

SI_FALSE

SIP_EOP_DETECT_OFFSET

Description

Adjusts the bottom point of the page when end-of-page detection is enabled.

If you find that the bottoms of pages are getting clipped too much by the end-of-page

detection feature, you can adjust the bottom point using this property. Positive values

make the page longer and negative values make the page shorter. Units are in hundredths

of an inch. Maximum offset is one inch in either direction. The default is zero.

Regardless of the offset specified in this property, a scanned page is never longer than the

length specified in the SIP_SCAN_LENGTH_IN_LINES property.

Item Types

SI_INT32

Container Types

SICON_RANGE

 67

SIP_FEED_DIRECTION

Description

Sets the feed direction, either forward or reverse, for scanning and feeding.

When feeding the paper, this property should be used in conjunction with

SIP_YRESOLUTION and SIP_YOFFSET. These three properties define the feeding

characteristics. Then SI_Feed() can be called to perform the feed. Reverse feeding is

useful for rejecting the paper when as scan is canceled by the user. In that case, the feed

direction can be set to reverse and SI_FeedPaperOut() can be called. The paper will be

fed in reverse until is clears the paper sensor.

Whether or not the scanner allows the reverse direction for both feeding and scanning

depends on the particular model. Some models may allow reverse feeding but not reverse

scanning.

If this property is not supported, the scanner can only feed forward.

Item Types

SI_INT32

Container Types

SICON_LIST

Values Allowed

SI_FORWARD

SI_REVERSE

SIP_FEED_RATE

Description

Allows adjustment of the feeding speed in inches per second. By default, feeds will run at

the fastest speed possible for a given mode and resolution. Note that feed rate is not the

same as scan rate (see the SIP_SCAN_RATE property).

 68

This property is optional and need not be changed. But in some cases, you may want to

purposely slow the feeding speed if the default is too fast for your particular application.

When you retrieve this property, the current value returned is the speed that paper will

move in inches per second. Unlike the SIP_SCAN_RATE property, the feed rate does

not depend on the settings of any other properties such as scan mode, resolution, or

duplex. Since this property uses a range container, you’ll also get a minimum and

maximum value that this property can be set to. Setting the current value lower than the

maximum will result in slower feed rates.

Adjusting this property will change the feeding portion of a scan but not the scan speed

itself. Thus if you scan a page with a top offset, the page will first be fed a distance equal

to the top offset at the feed rate set by this property. Then the scanning portion proceeds

at the speed set by the SIP_SCAN_RATE property.

The SIP_FEED_RATE property may or may not be supported depending on the scanner

model.

Item Types

SI_FLOAT32

Container Types

SICON_RANGE

SIP_GAMMA

Description

Sets the gamma value. The gamma value is used to create a lookup table that represents a

gamma curve.

Note that when any custom lookup table has been set with the properties SIP_LUT_RED,

SIP_LUT_GREEN, SIP_LUT_BLUE, or SIP_LUT_GRAY, the gamma value set in this

property is ignored.

Item Types

 69

SI_FLOAT32

Container Types

SICON_RANGE

SIP_HIGHLIGHT

Description

Sets the highlight level. The highlight level is the maximum white level. So for an 8-bit

grayscale image, for example, this would normally be set to 255 by default. If this value

is reduced to a lower value, then image levels that were originally darker will appear

brighter.

Note the interaction between SIP_HIGHLIGHT and SIP_SHADOW when setting the

current value. These two properties together define the range from dark to light.

SIP_HIGHLIGHT can never be equal to or less than the value of SIP_SHADOW. So

changing the current value of SIP_ HIGHLIGHT may cause the current SIP_ SHADOW

to be automatically adjusted to be one less than SIP_ HIGHLIGHT if it was originally

greater than or equal to it. You can check the current value of SIP_ SHADOW to confirm

this. Likewise, changing the current value of SIP_ SHADOW may affect the current

value of SIP_ HIGHLIGHT.

When any custom lookup table has been set with the properties SIP_LUT_RED,

SIP_LUT_GREEN, SIP_LUT_BLUE, or SIP_LUT_GRAY, the highlight value set in

this property is ignored.

Item Types

SI_INT32

Container Types

SICON_RANGE

 70

SIP_LED_INDICATOR1

SIP_LED_INDICATOR2

Description

Turns the LED indicators on or off. These LEDs are typically used to indicate some

status of the scanner, such as power on, ready so scan, or busy scanning. The number,

location, and color of the LEDs depend on the particular scanner model. Many models do

not have LEDs.

You can call SI_GetProperty() to find out the current state of the LEDs. If the scanner

has no LEDs, then SI_GetProperty() will return SIR_PROPERTY_UNSUPPORTED.

Item Types

SI_BOOL

Container Types

SICON_SINGLE

SIP_LINE_WIDTH_IN_BYTES

Description

Reports the line width, in terms of bytes, that will be returned by SI_ReadImageData().

This is always a read-only value. It is dependent on the properties SIP_SCAN_MODE

and SIP_SCAN_WIDTH_IN_PIXELS.

This property is used by the application to determine how large a buffer will be needed

when calling SI_ReadImageData(). The minimum buffer size should equal the number

of lines requested multiplied by the value of SIP_LINE_WIDTH_IN_BYTES.

 71

Item Types

SI_INT32

Container Types

SICON_SINGLE

SIP_LUT_BLUE

SIP_LUT_GREEN

SIP_LUT_GRAY

SIP_LUT_RED

Description

These four properties provide a means for setting a custom lookup table (LUT).

Depending on the scanner model, any or all of these tables may be supported.

The format and item type of the lookup table depends on the scanner model. For

example, the format could be an 8-bit table that provides 64K values used to map input

values to output values. Or, it could be a 16-bit table that provides 256 values that act as

input thresholds to determine the 8-bit output. See the model-specific info.

To disable a custom LUT, you must set its size to zero length. Custom LUTs are disabled

by default.

Note that when any custom lookup table has been set with the properties SIP_LUT_RED,

SIP_LUT_GREEN, SIP_LUT_BLUE, the following properties are ignored during a color

scan:

SIP_GAMMA

SIP_HIGHLIGHT

SIP_SHADOW

SIP_BRIGHTNESS

SIP_CONTRAST

SIP_PHOTOMETRIC_INTERPRETATION

Those properties are also ignored during a grayscale scan if the SIP_LUT_GRAY

property has been set.

 72

Item Types

SI_UINT16

SI_UINT8

Container Types

SICON_ARRAY

SIP_MAX_SCAN_TIME_IN_SEC

Description

Specifies the maximum expected scan time in terms of seconds. This allows the

application to set a maximum wait time. If the scanner has not responded in this time,

then it is considered an error. This value is primarily provided to help support the WIA

property WIA_DPS_MAX_SCAN_TIME.

Item Types

SI_INT32

Container Types

SICON_SINGLE

SIP_OPTICAL_RESOLUTION

Description

The native optical resolution of the scanner in terms of pixels per inch. This defines both

the horizontal and vertical resolution.

Item Types

SI_INT32

 73

Container Types

SICON_SINGLE

SIP_OPTICAL_WIDTH_IN_PIXELS

Description

The native optical width of the scanner in terms of pixels.

Item Types

SI_INT32

Container Types

SICON_SINGLE

SIP_PHOTOMETRIC_INTERPRETATION

Description

For binary scans, this property specifies whether a 0 indicates a white pixel or a black

pixel. When set to SI_PI_BLACKZERO, 0 indicates a black pixel. Or in other words,

when a black part of the image is scanned, it will produce a 0.

This property also works on grayscale and color scans by inverting the level ranges. For

grayscale, setting SI_PI_WHITEZERO would cause pixels at level 255 to be black.

Item Types

SI_INT32

Container Types

SICON_SINGLE

SICON_LIST

 74

Values Allowed

SI_PI_BLACKZERO

SI_PI_WHITEZERO

SIP_PLANARCHUNKY

Description

For color scanning, this property specifies whether the image data is returned in line

planar or chunky format. In line planar format, an entire line of red pixels is returned,

followed by and entire line of green pixels, and then an entire line of blue pixels. In

chunky format, pixels are returned RGB-RGB-etc.

Planar: RRRRRRRRRRRRRRRR

 GGGGGGGGGGGGGGGG

 BBBBBBBBBBBBBBBB

Chunky: RGBRGBRGBRGBRGBRGB

 RGBRGBRGBRGBRGBRGB

(RGB order is shown here for illustration only. The actual channel order is set with the

SIP_CHANNEL_ORDER property.)

If the scan mode is not set to color, then the value of this property does not apply.

Item Types

SI_INT32

Container Types

SICON_SINGLE

SICON_LIST

Values Allowed

SI_PC_PLANAR

SI_PC_CHUNKY

 75

SIP_PREFEED_ENABLED

Description

Enables the prefeed feature. When prefeed is enabled and the paper is inserted (and

triggers the paper sensor), the scanner will feed a short distance to “grab” the paper. This

provides some tactile feedback to the user and ensures that the paper will be fed when the

scan is started. But in some cases, when prefeed isn’t desired, it can be disabled using this

property.

Unlike most properties, the prefeed properties will persist after the interface is closed and

the DLL is unloaded. (Settings are stored in the registry) This is because the prefeed

feature is always in effect even when the application is not using the scanner interface.

Item Types

SI_BOOL

Container Types

SICON_SINGLE

Values Allowed

SI_TRUE

SI_FALSE

SIP_PREFEED_DELAY

Description

For the prefeed feature, this property allows you to set the time delay between when the

paper is inserted (triggering the paper sensor) and when the paper is fed. Units are in

milliseconds. Adjusting the prefeed delay to be longer gives the user more time to insert

the paper before the scanner will “grab” it. After more practice at feeding in pages, the

user may want to shorten the delay.

The setting for this property only applies when prefeed is enabled. (See the

SIP_PREFEED_ENABLED property.) Unlike most properties, the prefeed properties

will persist after the interface is closed and the DLL is unloaded. (Settings are stored in

 76

the registry) This is because the prefeed feature is always in effect even when the

application is not using the scanner interface.

Item Types

SI_INT32

Container Types

SICON_RANGE

SIP_PREFEED_DISTANCE

Description

For the prefeed feature, this property allows you to adjust how far in the paper gets fed.

The distance is specified in terms of hundredths of an inch. If you find that too much of

the top of the page is being clipped off, you can shorten this distance. Longer distances

will feed the paper in further.

The setting for this property only applies when prefeed is enabled. (See the

SIP_PREFEED_ENABLED property.) Unlike most properties, the prefeed properties

will persist after the interface is closed and the DLL is unloaded. (Settings are stored in

the registry) This is because the prefeed feature is always in effect even when the

application is not using the scanner interface.

Item Types

SI_INT32

Container Types

SICON_RANGE

SIP_SCAN_LENGTH_IN_LINES

Description

Set the length of the scan in terms of lines in the currently set vertical resolution.

 77

The number of lines is specified in the current vertical resolution. If the vertical

resolution is set to 100 DPI and SIP_SCAN_LENGTH_IN_LINES is set to 100 lines,

then the scan length will be 1 inch. But if the resolution is changed to 300 DPI, then the

scan length will be 1/3 of an inch.

Item Types

SI_INT32

Container Types

SICON_SINGLE

SICON_RANGE

SIP_SCAN_MODE

Description

Sets the mode of the scan, such as color or grayscale. The possible scan modes available

depend on the scanner model.

Item Types

SI_INT32

Container Types

SICON_SINGLE

SICON_LIST

Values Allowed

SI_SCANMODE_BW

SI_SCANMODE_GRAY

SI_SCANMODE_COLOR

 78

SIP_SCAN_RATE

Description

Allows adjustment of the scanning speed in inches per second. By default, scans will run

at the fastest speed possible for a give mode and resolution.

This property is optional and need not be set. But in some cases, you may want to

purposely slow the scanning speed to avoid scanner pauses which can occur if the

computer cannot read data as fast as the scanner is providing it. This can happen for very

slow computers or if the connection is the slower USB 1.1. However, scanner pauses are

not an error and the full page will still be scanned.

When you retrieve this property, the current value returned is the speed that paper will

move in inches per second for the current scan mode, resolution, and duplex settings.

Since this property uses a range container, you’ll also get a minimum and maximum

value that this property can be set to. Setting the current value lower than the maximum

will result in slower scan rates.

This property depends on the current scan mode, resolution, and duplex settings (for

duplex scanner models). Changing any one of those will cause the current scan rate value

to change to reflect the new scan speed. Therefore, you should re-read the value after

changing any of those properties.

Adjusting this property will change the scan speed but not the feed speed. Thus if you

scan a page with a top offset, the page will first be fed a distance equal to the top offset at

the feed rate. That feed rate can be controlled by the SIP_FEED_RATE property. Then

the scanning portion proceeds at the speed set by the SIP_SCAN_RATE property.

The SIP_SCAN_RATE property may or may not be supported depending on the scanner

model.

Item Types

SI_FLOAT32

Container Types

SICON_RANGE

 79

SIP_SCAN_WIDTH_IN_PIXELS

Description

Set the width of the scan in terms of pixels in the currently set horizontal resolution.

The number of pixels is specified in the current vertical resolution. If the horizontal

resolution is set to 100 DPI and SIP_SCAN_WIDTH_IN_PIXELS is set to 100, then the

scan width will be 1 inch. But if the horizontal resolution is changed to 300 DPI, then the

scan width will be 1/3 of an inch.

Item Types

SI_INT32

Container Types

SICON_SINGLE

SICON_RANGE

SIP_SHADOW

Description

Sets the shadow level. The shadow level is the minimum black level. So for an 8-bit

grayscale image, for example, this would normally be set to 0 by default. If this value is

increased to a higher value, then image levels that were originally brighter will appear

darker.

Note the interaction between SIP_HIGHLIGHT and SIP_SHADOW when setting the

current value. These two properties together define the range from dark to light.

SIP_SHADOW can never be equal to or higher than the value of SIP_HIGHLIGHT. So

changing the current value of SIP_SHADOW may cause the current SIP_HIGHLIGHT

to be automatically adjusted to be one greater than SIP_SHADOW if it was originally

less than or equal to it. You can check the current value of SIP_HIGHLIGHT to confirm

this. Likewise, changing the current value of SIP_HIGHLIGHT may affect the current

value of SIP_SHADOW.

 80

When any custom lookup table has been set with the properties SIP_LUT_RED,

SIP_LUT_GREEN, SIP_LUT_BLUE, or SIP_LUT_GRAY, the shadow value set in this

property is ignored.

Item Types

SI_INT32

Container Types

SICON_RANGE

SIP_SPOOLER_ENABLED

Description

Enables the scan spooler. The spooler is enabled by default. When a scan is started, the

spooler reads the scan data from the scanner and stores to a file on disk. This prevents the

scanner from pausing in the middle of a scan if its buffer becomes full.

If the scanner supports duplex (the SIP_DUPLEX_ENABLED property exists) and

duplex is enabled, then the spooler must also be enabled in order to read both sides. If the

spooler is disabled, then only once side or the other can be read. If the spooler is

explicitly disabled by the application, it will not become automatically enabled when

duplex is enabled. It is up to the application to re-enable the spooler.

Item Types

SI_BOOL

Container Types

SICON_SINGLE

Values Allowed

SI_TRUE

SI_FALSE

 81

SIP_THRESHOLD

Description

Sets the threshold level for binary scans. The default value for 8-bit binary is 128.

This property is ignored grayscale and color scan modes.

Item Types

SI_INT32

Container Types

SICON_RANGE

SIP_USB_RATE

Description

Reports the current USB connection rate, either FULL (12Mbits/sec.) or HIGH

(480Mbits/sec.). This property is read-only. It is optional and may not exist for all

scanner models.

If the host adapter is USB 1.1 or if there is a USB 1.1 hub anywhere along the chain, then

this property’s current value will return SI_USB_FULL. Otherwise it will return

SI_USB_HIGH. This can be useful for determining if you need to slow down the scan rate

to prevent scanner pauses.

The connection rate is determined by the scanner itself as a result of negotiation and not

by an actual measurement of transfer speed. To get an actual measurement of the USB

transfer speed, see the SI_Diagnostic() API function.

Item Types

SI_INT32

 82

Container Types

SICON_LIST

Values Allowed

SI_USB_FULL

SI_USB_HIGH

SIP_USB_SERIAL_NUMBER

Description

Reports the scanner’s USB serial number as a zero-terminated ASCII string. This

property is read-only. It is optional and may not exist for all scanner models.

If this string is empty (length of zero), then the scanner does not have a USB serial

number.

Item Types

SI_STR

Container Types

SICON_SINGLE

SIP_XOFFSET

Description

Sets the X offset (left margin) of the scan window in terms of pixels in the current

resolution.

 83

Increasing the X offset reduces the allowable range for the

SIP_SCAN_WIDTH_IN_PIXELS property.

Item Types

SI_INT32

Container Types

SICON_RANGE

SIP_XRESOLUTION

Description

Sets the horizontal resolution in terms of pixels per inch.

In most scanners, the X and Y resolutions must be the same. Therefore, changing

SIP_XRESOLUTION will result in SIP_YRESOLUTION changing to match.

Item Types

SI_INT32

Container Types

SICON_RANGE

SICON_LIST

 84

SIP_YOFFSET

Description

Sets the Y offset (top margin) of the scan window in terms of pixels in the current

resolution.

Increasing the Y offset reduces the allowable range for the

SIP_SCAN_LENGTH_IN_LINES property.

Item Types

SI_INT32

Container Types

SICON_RANGE

SIP_YRESOLUTION

Description

Sets the vertical resolution in terms of pixels per inch.

In most scanners, the X and Y resolutions must be the same. Therefore, changing

SIP_YRESOLUTION will result in SIP_XRESOLUTION changing to match.

Item Types

SI_INT32

Container Types

SICON_RANGE

SICON_LIST

	Introduction
	Package Contents
	Requirements
	Scanner Installation

	Technical Overview
	Including the DLL in Your Application
	Using the API
	Initializing the Interface
	Calibrate the Scanner
	Setup Parameters for Scanning
	Check for Paper
	Scan a page
	Feed the Paper out
	Close the Interface

	Typical Program Flow Diagram
	Calling API Functions From Multiple Processes
	About Calibration
	Debugging
	Image Spooling

	Function Reference
	SI_OpenInterface
	SI_CloseInterface
	SI_IsCalibrated
	SI_Calibrate
	SI_Clean
	SI_GetScannerStatus
	SI_GetPaperStatus
	SI_GetButtonStatus
	SI_GetProperty
	SI_SetProperty
	SI_StartScan
	SI_ReadImageData
	SI_EndScan
	SI_Feed
	SI_FeedPaperOut
	SI_Diagnostic
	SI_GetEvent
	SI_Reset
	SI_GetLastError
	SI_GetLastErrorText

	Properties
	Functions
	Values and Containers
	SIValue
	SISingle
	SIRange
	List
	SIArray

	Retrieving Property Values
	Setting Property Values

	Property Reference
	SIP_BITS_PER_CHANNEL
	SIP_BITS_PER_PIXEL
	SIP_BRIGHTNESS
	SIP_CHANNEL_ORDER
	SIP_CONTRAST
	SIP_DESCREEN_ENABLED
	SIP_DROPOUT_COLOR
	SIP_DUPLEX_ENABLED
	SIP_EOP_DETECT_ENABLED
	SIP_EOP_DETECT_OFFSET
	SIP_FEED_DIRECTION
	SIP_FEED_RATE
	SIP_GAMMA
	SIP_HIGHLIGHT
	SIP_LED_INDICATOR1
	SIP_LED_INDICATOR2
	SIP_LINE_WIDTH_IN_BYTES
	SIP_LUT_BLUE
	SIP_LUT_GREEN
	SIP_LUT_GRAY
	SIP_LUT_RED
	SIP_MAX_SCAN_TIME_IN_SEC
	SIP_OPTICAL_RESOLUTION
	SIP_OPTICAL_WIDTH_IN_PIXELS
	SIP_PHOTOMETRIC_INTERPRETATION
	SIP_PLANARCHUNKY
	SIP_PREFEED_ENABLED
	SIP_PREFEED_DELAY
	SIP_PREFEED_DISTANCE
	SIP_SCAN_LENGTH_IN_LINES
	SIP_SCAN_MODE
	SIP_SCAN_RATE
	SIP_SCAN_WIDTH_IN_PIXELS
	SIP_SHADOW
	SIP_SPOOLER_ENABLED
	SIP_THRESHOLD
	SIP_USB_RATE
	SIP_USB_SERIAL_NUMBER
	SIP_XOFFSET
	SIP_XRESOLUTION
	SIP_YOFFSET
	SIP_YRESOLUTION

