

Development Using

Microsoft .NET Languages

2

C# or VB Application

ScannerMng.dll

(C++ / CLI)

Driver DLL
(e.g. DPORT487.DLL)

C / C++ Application

Windows STI

Scanner Hardware

Introduction

Document Capture Technologies DocketPORT scanners support applications developed using

Microsoft .NET-based languages. This is accomplished through two different methods, either

one of which may be used. The first method is through a thin translation layer implemented in

ScannerMng.dll. The second method is by using the P/Invoke mechanism to make calls to

the low-level driver DLL.

ScannerMng.dll

ScannerMng.dll is an interface layer that translates from managed code to unmanaged code,

and thus P/Invoke methods are not needed. This DLL can be renamed as desired. Source code for

ScannerMng.dll is provided. It is implemented in C++/CLI and therefore requires Visual

Studio 2005 to make any modifications.

The implementation of this managed interface is intended to parallel that of the unmanaged API

for consistency. Most of the information in the main Scanner Development Kit document still

applies and is also used as a basis for developing managed applications. Therefore it’s important

to read the main SDK document even when using managed code. Only the differences will be

described here.

3

While the API functions are similar, you’ll see that parameters are handled in a way that’s more

appropriate for a managed language. For example, where in C or C++ you would pass a text

string parameter as a char*, in C# you would pass a string object.

P/Invoke

P/Invoke (short for Platform Invoke) is Microsoft’s generalized mechanism for translating from

managed code to unmanaged code. (See Using P/Invoke to Call Unmanaged APIs from Your

Managed Classes on the MSDN website) The DCT driver functions can be accessed through

P/Invoke.

The remainder of this document will describe only the ScannerMng.dll method and not

P/Invoke. However, two small sample applications are provided, one for C# (CSSamplePI)

and one for Visual Basic (VBSamplePI), that demonstrate the use of P/Invoke. You can cut and

paste the function declarations into your own code. Please see the section on sample applications

below.

Requirements

Development of .NET programs that access the scanner driver requires Visual Studio 2005

Professional Edition or later. (Other editions of Visual Studio 2005 may work but are not tested

or supported) There are a couple of reasons for this In the case of using ScannerMng.dll,

since this DLL is built using Visual Studio 2005, projects in earlier versions of Visual Studio

cannot add this DLL as a reference. In the case of using P/Invoke, the driver functions use the

cdecl calling convention which is not supported in earlier versions of Visual Studio.

Also note that the version 8.0 runtime libraries are required for ScannerMng.dll. This

includes files:

MSVCR80.DLL

MSVCM80.DLL

MSCOREE.DLL

These libraries cannot be linked statically.

Sample Applications

A small sample application is provided in both C# (CSSample) and Visual Basic (VBSample)

format. This program scans a letter-size page and saves it to BMP-format file. This demonstrates

http://msdn2.microsoft.com/en-us/library/aa719104(vs.71).aspx
http://msdn2.microsoft.com/en-us/library/aa719104(vs.71).aspx
http://msdn2.microsoft.com/en-us/library/aa719104(vs.71).aspx

4

the basics of scanning, although it doesn’t exercise all of the possible scanner capabilities. A

sample program is often the fastest and easiest way to see how the scanner API works.

Also included are sample applications CSSamplePI and VBSamplePI which are the

equivalent of the programs CSSamplePI and VBSamplePI except that they use the P/Invoke

method. As you’ll notice, the code for the P/Invoke samples is almost the same. The notable

differences are:

 With the P/Invoke samples, you don’t create an instance of the Scanner class. Instead,

you call the API functions as static functions with the class name qualifier. For example,

SIScanner.SI_StartScan() instead of m_scanner.SI_StartScan().

 In the SIProperty class, some fields that are intended to be (pointers to) arrays in C++

cannot be accessed as arrays in managed code. For example, the field

SIProperty.list.items.piVal is a pointer to an array of integers. In these cases, the

array is just copied to a managed array. In C# this would be:

See the sample applications for examples of this.

As mentioned earlier, the remainder of this document will refer to only the ScannerMng.dll

method. But reference to the sample applications should make the P/Invoke method fairly

straightforward.

Developing With the Managed API

To begin building a managed application, add a reference

to the ScannerMng.dll file.

At the top of source files that use the scanner API add the following line to specify the

namespace “ScannerMng”.

 // scanModes will have the list

Int32[] scanModes = new Int32[prop.list.numItems];

Marshal.Copy(prop.list.items.piVal, scanModes, 0, prop.list.numItems);

5

The SIScanner class

In the managed interface, all scanner function calls are methods of the SIScanner class. So in

order to call the functions you first create an instance of SIScanner.

This is different from the unmanaged interface which, being a C interface, does not use a

SIScanner class.

The constructor takes one parameter which is the filename of the scanner DLL. The name used

here is the “DPORT487.dll” which is the DLL filename for the DocketPORT 487. But you

should use the filename for your particular scanner model. If you look at the diagram in the

introduction section, you can see that the ScannerMng.dll file must in turn load the

DPORT487.dll file, so it needs to know the filename. Since it loads using the Win32 function

LoadLibrary(), the same DLL searching rules apply as with LoadLibrary(). (See

Microsoft documentation for more information on LoadLibrary()) Typically the

DPORT487.dll file is installed to the System32 directory so you don’t need to specify a full

pathname.

The SIScanner constructor may throw an ApplicationException exception if the

specified DLL cannot be loaded. This is the only exception that the SIScanner constructor

might throw. No other function in the API will throw exceptions; all other functions return a

value of type SIResult to indicate success or failure. This is consistent with the unmanaged

version of the API.

Open the Interface

The first function you must call is SI_OpenInterface(). This initializes the interface and

must be called before any other functions. This is the same as with the unmanaged interface

except that the parameter is a string instead of a char pointer. The parameter is the textual

name of the scanner, which depends on the scanner model.

using ScannerMng;

SIScanner scanner = new SIScanner("DPORT487.dll");

6

Note that the return value SIResult is an enumeration. All possible return values are members

of the SIResult enumeration. So you could test those for success using code something like

the following:

This example also makes use of the SI_GetLastErrorText() function, which returns a

text string describing the last result returned from an API function.

All constant values that are defined as either const or #define in the unmanaged API are

defined as members of some enumeration or class in the managed API. All constant identifiers

are the same as in the unmanaged version (ScannerAPI.h file) except that they must be preceded

by the qualifier.

Two notable qualifiers in the ScannerMng namespace are:

 SIResult. Contains constants returned from functions as return values.

For example:

 SIResult.SIR_SUCCESS

 SIResult.SIR_INTERFACE_NOT_OPEN

 SIProperty. Contains constants used in setting and getting scanner properties

using the SIProperty class.

For example,

 SIProperty.SIP_OPTICAL_RESOLUTION

 SIProperty.SI_INT32

 SIProperty.SI_TRUE

SIResult result;

result = scanner.SI_OpenInterface("DocketPORT487");

if (result != SIResult.SIR_SUCCESS)

{

string str = "";

 scanner.SI_GetLastErrorText(ref str);

 MessageBox.Show(str);

 return;

}

7

There are also other enumerations used for specific functions. Refer to the function reference for

more info.

Calibrate the Scanner

If this is the first time the scanner is being used, it has probably not been calibrated yet. In that

case you need to perform calibration. This is handled in a way similar to the unmanaged

interface. The CSSample.cs sample program has an example of calibrating the scanner. Please

refer to the sample code and also the function reference for more detail.

One notable difference in the managed API is that the callback function used to report progress is

a delegate instead of a function pointer. This is an optional parameter depending on whether

you’d like to get calibration progress and cancel the operation.

The following code is an example of calibration.

SIResult result;

SICalibrationState calState = SICalibrationState.NOT_CALIBRATED;

result = scanner.SI_IsCalibrated(ref calState);

if (result == SIResult.SIR_SUCCESS)

{

 if (calState == SICalibrationState.NOT_CALIBRATED)

{

// The scanner has not been calibrated.

// <Here you would check the paper status to make

// sure the calibration target is inserted.>

 // Perform the calibration.

result = scanner.SI_Calibrate(

SICalibrationTarget.SI_CT_DEFAULT, null);

 if (result == SIResult.SIR_SUCCESS)

 {

 MessageBox.Show("Calibration was successful.");

 }

 else

 {

 MessageBox.Show("Calibration failed.");

 }

}

}

// Continue on to scan an image

8

Properties

Scanner properties work in a way very similar to the unmanaged API. You set the scanner

properties using the SI_SetProperty() function and you query the properties using the

SI_GetProperty() function. Both of these functions take a single parameter of type

SIProperty.

However the main difference in the managed version is that the SIProperty parameter is an

class instead of a structure and it includes members that are allocated from the managed heap. So

to retrieve the property for X resolution, you would write:

For consistency with the unmanaged API, the SIProperty class is implemented to be similar

to the unmanaged structure which actually contains some unions. Although unions are not

supported in C#, the layout and meaning of the fields are still similar.

Referring the example above, you can access prop.list.current.iVal because the

SIP_XRESOLUTION property uses a list container (as specified in the

prop.containerType field). The list container is allocated during the call to

SI_GetProperty. It would be invalid to try to access prop.range or prop.single.

The same case exists with the item type. In the example above, since the item type for

SIP_XRESOLUTION (specified in the prop.containerType field) is SI_INT32, you

would access this value using prop.list.current.iVal. It would be invalid to try to

access the member fVal or strVal.

To set a given property, the simplest (and recommended) way is to call SI_GetProperty first so

that all fields of the SIProperty object are correctly filled out. Then you can modify the

“current” value and pass the SIProperty object to SI_SetProperty() to set it.

The following example sets the X resolution property to 200 DPI.

SIProperty prop = new SIProperty(); // allocate a SIProperty object

SIResult result;

prop.propertyID = SIProperty.SIP_XRESOLUTION; // specify the ID of the

 // property we want

result = scanner.SI_GetProperty(prop); // Get the property

Debug.Assert(result == SIResult.SIR_SUCCESS); // make sure it succeeded

int currentRes = prop.list.current.iVal; // get the current

// resolution value

9

Of course, it’s also possible to set a property without calling SI_GetProperty first. You can

setup the required four fields of the SIProperty class. But this method is longer, even longer

in managed code than in unmanaged code because you also need to allocate reference values

within the class as well. For example,

The difference between this and the unmanaged code version is that you also need to allocate the

list container. However, you do not need to allocate the list of possible items

(prop.list.items.piVal) since the list is ignored by SI_SetProperty.

As described in the SDK manual, you can also use a SICON_SINGLE container to set the

current value of properties that have containers of types SICON_LIST or SICON_RANGE.

Please refer to the SDK manual for more information about using scanner properties.

Check for Paper

Before starting a scan, you’ll normally want to check whether or not there is paper inserted. The

following C# example displays a message prompting the user to insert the paper and confirm that

paper is in.

SIProperty prop = new SIProperty();

SIResult result;

prop.propertyID = SIProperty.SIP_XRESOLUTION; // initialize the ID

result = scanner.SI_GetProperty(prop); // Get the property

Debug.Assert(result == SIResult.SIR_SUCCESS); // make sure it succeeded

prop.list.current.iVal = 200; // specify the new current

// resolution

result = scanner.SI_SetProperty(prop); // Set the property

Debug.Assert(result == SIResult.SIR_SUCCESS); // make sure it succeeded

SIProperty prop = new SIProperty();

SIResult result;

prop.propertyID = SIProperty.SIP_XRESOLUTION; // initialize the ID

prop.containerType = SIProperty.SICON_LIST; // uses a list container

prop.itemType = SIProperty.SI_INT32; // Set the item type to 32-bit

// integer

prop.list = new SIList(); // allocate a list container

prop.list.current.iVal = 200; // specify the new current

// resolution

result = scanner.SI_SetProperty(prop); // Set the property

Debug.Assert(result == SIResult.SIR_SUCCESS); // make sure it succeeded

10

Scan a Page

Once all properties are set and there is paper in the scanner, you can begin the scan. To do this,

call SI_StartScan(), which takes no parameters. The scan will use the currently set

properties. See the main SDK document for more detail.

SIResult result;

SIPaperStatus paperStatus = SIPaperStatus.SI_PS_PAPER_OUT;

// Check if the paper is in.

result = scanner.SI_GetPaperStatus(ref paperStatus);

while (paperStatus == SIPaperStatus.SI_PS_PAPER_OUT)

{

 DialogResult dlgRes = MessageBox.Show(

Insert paper and press any key to begin the scan.”,

 "", MessageBoxButtons.OKCancel);

 if (dlgRes == DialogResult.Cancel)

 {

 // skip the scan

return;

 }

 // Check if the paper is in.

 result = m_scanner.SI_GetPaperStatus(ref paperStatus);

 if(result != SIR_SUCCESS)

 {

 MessageBox.Show("Error getting paper status.");

 }

};

SIResult result;

result = scanner.SI_StartScan();

Debug.Assert(result == SIResult.SIR_SUCCESS);

11

Once the scan has started, the page will begin to feed. You can then read image data using the

SI_ReadImageData() function in a loop. This function lets you read out a number of lines.

End the Scan

When you are done reading image data, call SI_EndScan() to end the scan for this page. You

can then call SI_FeedPaperOut() to feed the paper all the way out of the scanner.

Close the Interface

Once you have completely finished scanning, you must call SI_CloseInterface() to clean up any

resources.

SIResult result;

uint numLinesReturned = 0;

// Allocate a buffer big enough to hold 10 lines

// The widthInBytes variable contains the width of one line in bytes

// as obtained from the SIP_LINE_WIDTH_IN_BYTES property.

byte[] lineBuffer = new byte[widthInBytes * 10];

result = scanner.SI_ReadImageData(

lineBuffer,

10, // Read at most 10 lines

0, // specify the front page (if duplex)

ref numLinesReturned); // num lines actuall returned

// End the page.

scanner.SI_EndScan();

// Feed the paper out of the scanner.

scanner.SI_FeedPaperOut();

// Close the scanner interface.

scanner.SI_CloseInterface();

12

Function Reference

The scanner is controlled through a set of member functions of the SIScanner class. The

functions are callable from a managed language such as C#.

All API functions return a result code of type SIResult which is defined as:

The result code normally reports the success or failure of the function. Possible result codes are

members of SIResult and begin with the prefix “SIR_”. In general, the code SIR_SUCCESS

is returned when a function completes successfully.

Callback functions should use the SICALLBACK macro. See the SI_Calibrate or SI_Clean

functions for more information.

SI_OpenInterface

The SI_OpenInterface function opens and initializes the scanner interface for use. It must be

called before any other function.

Parameters

pName [in] A case-sensitive, ASCII string specifying the scanner to open. This

string is product-specific. Contact DCT for the string to use.

Return Values

SIResult.SIR_SUCCESS The scanner was opened successfully.

SIResult SI_OpenInterface(

string pName

);

public enum SIResult;

13

SIResult.SIR_ALREADY_OPEN SI_OpenInterface has already been called

and the scanner interface is already open.

SIResult.SIR_UNKNOWN_MODEL_NAME The string passed in with the pName

parameter was not recognized as a

supported model.

SIResult.SIR_BAD_PARAMETER pName was NULL.

SIResult.SIR_SCANNER_NOT_READY The scanner hardware could not be

detected. The scanner is not connected.

SIResult.SIR_INITIALIZATION_FAILURE The scanner could not be opened and

initialized.

SIResult.SIR_DEVICE_COMMUNICATION_ERROR There was a low-level error while trying to

communicate with the scanner. The driver

could not communicate with the scanner.

Remarks

SI_OpenInterface must be the first function that is called. It initializes the scanner and opens

the API for use. The application should call SI_CloseInterface when the scanner is not longer

needed.

See Also

SI_CloseInterface

SI_CloseInterface

This SI_CloseInterface function closes the scanner API and frees resource used by the scanner.

It is the complementary function to SI_OpenInterface.

SIResult SI_CloseInterface();

14

Parameters

None.

Return Values

SIResult.SIR_SUCCESS The scanner interface was closed successfully.

SIResult.SIR_INTERFACE_NOT_OPEN The scanner interface is not open. SI_OpenInterface

was not called.

Remarks

SI_CloseInterface must be called before the DLL is unloaded to free resources. After calling

SI_CloseInterface, no other functions can be called (until SI_OpenInterface is called again).

See Also

SI_OpenInterface

SI_IsCalibrated

The SI_IsCalibrated function determines whether or not the scanner has been calibrated.

SIResult SI_IsCalibrated(

ref SICalibrationState pState

);

15

Parameters

pState [out] On successful return, pState is set to

SICalibrationState.CALIBRATED if the scanner is calibrated,

SICalibrationState.NOT_CALIBRATED if the scanner is not

calibrated.

Return Values

SIResult.SIR_SUCCESS The calibration state was returned successfully. The

value pointed to by pState has been set.

SIResult.SIR_BAD_PARAMETER The pState parameter was NULL.

SIResult.SIR_INTERFACE_NOT_OPEN The scanner interface is not open. SI_OpenInterface
was not called.

Remarks

To verify that calibration has been done, SI_IsCalibrated checks for the existence of a

calibration data file on disk. See SI_Calibrate for more info.

See Also

SI_Calibrate

SI_Calibrate

The SI_Calibrate function performs calibration on the scanner.

SIResult SI_Calibrate(

SICalibrationTarget target,

ProgressCallbackDelegate progressCallback

);

16

Parameters

target [in] One of the SICalibrateTarget enumeration values that identifies the

specific target that is inserted in the scanner. This value is model-specific.

See Remarks.

 Possible values for this parameter are:

SI_CT_DEFAULT The scanner will perform the default calibration

procedure. The calibration procedure will auto-

detect the target depending on the model.

progressCallback [in] A delegate to a user function that will be called periodically

during the calibration process to report the progress and to allow

the application to cancel the calibration. This parameter can be set

to null if no callback if needed. See Remarks for more details.

Return Values

SIResult.SIR_SUCCESS The scanner was calibrated successfully.

SIResult.SIR_CALIB_WHITE_TARGET The scanner calibrated successfully assuming

the target was a white-only target. This will be

returned when the calibration process is able

to auto-detect the target type, and it detected

that the target was white-only.

SIResult.SIR_NOT_CALIBRATED The scanner could not be calibrated.

SIResult.SIR_BAD_PARAMETER The value of the target parameter was not

valid.

SIResult.SIR_USER_CANCELLED A callback function was specified in

progressCallback and that callback returned

SICallbackResult.CANCEL to cancel

the calibration process.

SIResult.SIR_FILESYSTEM_ACCESS_DENIED The file system did not allow access to the

calibration file.

17

SIResult.SIR_SCANNER_BUSY The scanner is busy and cannot perform

calibration.

SIResult.SIR_INTERFACE_NOT_OPEN The scanner interface is not open.

SI_OpenInterface was not called.

SIResult.SIR_DEVICE_COMMUNICATION_ERROR There was a low-level error while trying to

communicate with the scanner. The driver

could not communicate with the scanner.

Remarks

For scanner models that can use more than one possible calibration target—for example, black &

white or white-only—the target parameter can be set by the application to specify which target is

inserted. This parameter is therefore model-specific. Some models have only one possible target

and so this parameter is ignored. Some models can accept more than one target but the

calibration process can auto-detect which target is inserted. In such a case, you should pass

SI_CT_DEFAULT as the target parameter.

If the progressCallback parameter is set to null, the SI_Calibrate function will not return until

calibration is completed or an error occurred. The time to complete calibration may vary

depending on the scanner model.

If the progressCallback parameter is not null, it must point to a delegate that will be called

during the calibration process to report the percentage complete. The delegate function must

have the following form:

This function will be called with the percentComplete parameter indicating the progress of the

calibration as a percentage (from 0 to 100). To allow the calibration to continue, you must return

SICallbackResult.CONTINUE. If you return SICallbackResult.CANCEL, the

calibration will be aborted and the SI_Calibrate function will return

SIResult.SIR_USER_CANCELLED.

Note that after calling SI_Calibrate, all properties will be reset to their default values.

Calibration data is stored in a file named Calibration.dat. The location of this file on disk

depends on the operating system. On Windows systems, the file is stored in the folder indicated

by the Windows API function SHGetFolderPath() using the folder ID

public SICallbackResult ProgressCallback(UInt32 percentComplete)

18

CSIDL_COMMON_APPDATA. Therefore, the file will exist in a location common to all users on

the computer. The file will normally be placed in a subfolder of that location based on the

scanner model name. This folder will be created when SI_OpenInterface is called if it does not

already exist, provided that the user has sufficient permission. The SI_IsCalibrated function

will check for the existence of this file to determine if the scanner has been calibrated or not. The

administrator of the system can set the permissions of the file to prevent writing by other users if

those users should not be allowed to calibrate the scanner.

See Also

SI_IsCalibrated

SI_Clean

The SI_Clean function performs a back-and-forth feeding motion to clean the glass of the image

sensor module when special cleaning paper is used.

Parameters

progressCallback [in] A delegate to a user function that will be called periodically

during the cleaning process to report the progress and to allow the

application to cancel the operation. This parameter can be set to

null if no callback if needed. See Remarks for more details.

Return Values

SIResult.SIR_SUCCESS The scanner completed cleaning successfully.

SIResult SI_Clean(

ProgressCallbackDelegate progressCallback

);

19

SIResult.SIR_USER_CANCELLED A delegate function was specified in

progressCallback and that function returned

SICallbackResult.CANCEL to cancel

the cleaning process.

SIResult.SIR_SCANNER_BUSY The scanner is busy and cannot perform

cleaning.

SIResult.SIR_INTERFACE_NOT_OPEN The scanner interface is not open.

SI_OpenInterface was not called.

SIResult.SIR_DEVICE_COMMUNICATION_ERROR There was a low-level error while trying to

communicate with the scanner. The driver

could not communicate with the scanner.

Remarks

Before calling the SI_Clean function, you must check the paper sensor (see

SI_GetPaperStatus) make sure the user has inserted the special cleaning paper. SI_Clean does

not check for paper.

If the progressCallback parameter is set to null, the SI_Clean function will not return until

cleaning is completed or an error occurred. The time to complete cleaning may vary depending

on the scanner model.

If the progressCallback parameter is not null, it must point to a delegate function that will be

called during the cleaning process to report the percentage complete. The function must have the

following form:

This function will be called with the percentComplete parameter indicating the progress of the

cleaning process as a percentage (from 0 to 100). To allow the cleaning to continue, you must

return SICallbackResult.CONTINUE. If you return SICallbackResult.CANCEL,

the cleaning will be aborted and the SI_Clean function will return

SIResult.SIR_USER_CANCELLED.

public SICallbackResult ProgressCallback(UInt32 percentComplete)

20

SI_GetScannerStatus

The SI_GetScannerStatus returns information about the current status of the scanner.

Parameters

scannerStatus [out] A reference to an SIScannerStatus variable which, upon

successful return, is filled with a code indicating the scanner’s current

status. Possible values reported are:

SIScannerStatus.SI_SS_OFFLINE The scanner is not available.
SIScannerStatus.SI_SS_READY The scanner is online and

ready to scan.
SIScannerStatus.SI_SS_ONLINE_BUSY The scanner is online but is

busy and cannot scan. This

can occur if the scanner is

currently scanning in

another process.

Return Values

SIResult.SIR_SUCCESS The scanner status was obtained successfully.

SIResult.SIR_INTERFACE_NOT_OPEN The scanner interface is not open. SI_OpenInterface

was not called. The status cannot be determined

Remarks

SI_GetScannerStatus can be called just prior to SI_StartScan to determine if the scanner is

ready to scan. However, it is not strictly necessary to call SI_GetScannerStatus since

SIResult SI_GetScannerStatus(

ref SIScannerStatus pScannerStatus

);

21

SI_StartScan will return an appropriate error if the scanner is not ready for any reason. The best

use of this function might be to immediately alert the user that the cable has been unplugged

rather than wait until the next scan. In that case you could poll this function.

This function will not return SIR_DEVICE_COMMUNICATION_ERROR since if there is any

problem communicating with the scanner, the status will be considered SI_SS_OFFLINE and the

function will return SIR_SUCCESS.

See Also

SI_GetPaperStatus, SI_GetButtonStatus

SI_GetPaperStatus

The SI_GetPaperStatus indicates whether or not paper is inserted into the scanner.

Parameters

paperStatus [out] A reference to an SIPaperStatus variable which, upon

successful return, is filled with a code indicating whether or not

paper is present. Possible values reported are:

SIPaperStatus.SI_PS_PAPER_IN Paper is inserted in the

scanner.
SIPaperStatus.SI_PS_PAPER_OUT There is no paper in the

scanner.

SIResult SI_GetPaperStatus(

ref SIPaperStatus paperStatus

);

22

Return Values

SIResult.SIR_SUCCESS The scanner status was obtained

successfully.

SIResult.SIR_INTERFACE_NOT_OPEN The scanner interface is not open.

SI_OpenInterface was not called. The

paper status cannot be determined.

SIResult.SIR_DEVICE_COMMUNICATION_ERROR There was a low-level error while trying to

communicate with the scanner. The driver

could not communicate with the scanner.

Remarks

SI_GetPaperStatus can be called just prior to SI_StartScan to determine if there is paper in the

scanner before starting a scan. SI_StartScan does not required that there be paper in the scanner,

so it is up to the application to check for paper and only call SI_StartScan once paper is present.

SI_GetPaperStatus can be called at any time after SI_OpenInterface is called, even during

scanning, between calls to SI_ReadImageData. Using it this way, one can detect when the end

of page has been reached. However, that method can be inaccurate since the image is normally

spooled to disk during scanning. The recommended method is to use the

SIP_EOP_DETECT_ENABLED property.

See Also

SI_GetScannerStatus, SI_GetButtonStatus

SI_GetButtonStatus

The SI_GetButtonStatus indicates whether or not paper is inserted into the scanner.

SIResult SI_GetButtonStatus(

UInt32 buttonNumber,

ref SIButtonStatus buttonStatus

);

23

Parameters

buttonNumber [in] A zero-based value indicating which button to check. The first

button is 0, second button 1, and so forth. This value must be set

even if there is only a single button available.

buttonStatus [out] A reference to an SIButtonStatus variable which, upon

successful return, is filled with a code indicating whether or not the

button is pressed. Possible values reported are:

SIButtonStatus.SI_BS_UP The button is not pressed.

SIButtonStatus.SI_BS_DOWN The button is pressed.

Return Values

SIResult.SIR_SUCCESS The scanner status was obtained

successfully.

SIResult.SIR_INTERFACE_NOT_OPEN The scanner interface is not open.

SI_OpenInterface was not called. The

button status cannot be determined

SIResult.SIR_DEVICE_COMMUNICATION_ERROR There was a low-level error while trying to

communicate with the scanner. The driver

could not communicate with the scanner.

Remarks

SI_GetButtonStatus can be called at any time after SI_OpenInterface is called, even during

scanning, between calls to SI_ReadImageData.

See Also

SI_GetScannerStatus, SI_GetPaperStatus

24

SI_GetProperty

The SI_GetProperty function retrieves information about a specified scanner property. Examples

of scanner properties are scan width and length, scan mode, and resolution.

Parameters

property [in-out] A SIProperty object that receives the property information.

The propertyID member of this class must be set to the ID of the

property to retrieve.

Return Values

SIResult.SIR_SUCCESS The property information was obtained

successfully.

SIResult.SIR_BAD_PARAMETER The property parameter was null.

SIResult.SIR_PROPERTY_UNSUPPORTED The property ID set in property was not one of

the support IDs for this scanner.

SIResult.SIR_INTERFACE_NOT_OPEN The scanner interface is not open.

SI_OpenInterface was not called.

Remarks

Upon successful completion of the function, the property parameter will be filled out with

relevant information about that property, including the current value and valid values.

See the documentation elsewhere on Properties for more information on getting and setting

properties and a list of scanner properties that can be queried.

SIResult SI_GetProperty(

SIProperty property

);

25

See Also

SI_SetProperty

SI_SetProperty

The SI_SetProperty function is used to set properties (scan parameters) used in scanning.

Examples of scanner properties are scan width and length, scan mode, and resolution.

Parameters

property [in] An SIProperty object. Four fields of the property must be set:

 propertyID

 containerType

 itemType

 the current value (within the appropriate container)

Return Values

SIResult.SIR_SUCCESS The scanner status was obtained successfully.

SIResult.SIR_BAD_PARAMETER The property parameter was null.

SIResult.SIR_PROPERTY_UNSUPPORTED The property ID set in the property parameter

was not one of the support IDs for this

scanner.

SIResult.SIR_PROPERTY_INVALID_VALUE One or more of the fields in property were

invalid or out of range. Use SI_GetProperty to

find valid values.

SIResult.SIR_INTERFACE_NOT_OPEN The scanner interface is not open.

SI_OpenInterface was not called.

SIResult SI_SetProperty(

SIProperty property

);

26

Remarks

Upon successful completion of the function, the property will be set to the new value. As a

result, other properties may have changed. The application can use SI_GetProperty to check for

any updated values.

See the documentation elsewhere on Properties for more information on getting and setting

properties and a list of scanner properties that can be set.

See Also

SI_GetProperty

SI_StartScan

The SI_StartScan function initiates a scan using the scan parameter set up in SI_SetProperty.

Parameters

None.

Return Values

SIResult.SIR_SUCCESS The scan was initiated status was obtained

successfully.

SIResult.SIR_SCANNER_BUSY The scanner is busy and cannot scan.

Another process may currently be

scanning.

SIResult SI_StartScan();

27

SIResult.SIR_INTERFACE_NOT_OPEN The scanner interface is not open.

SI_OpenInterface was not called.

SIResult.SIR_DEVICE_COMMUNICATION_ERROR There was a low-level error while trying to

communicate with the scanner. The driver

could not communicate with the scanner.

Remarks

The SI_StartScan function returns immediately after the scan was started. The application can

then call SI_ReadImageData to begin retrieving the image data.

To end the scan that was started, the application must call SI_EndScan.

The API functions SI_Feed and SI_FeedPaperOut cannot be called between SI_StartScan and

SI_EndScan. Attempting to call these functions at that time will result in a

SIR_SCANNER_BUSY error.

See Also

SI_ReadImageData, SI_EndScan

SI_ReadImageData

The SI_StartScan function initiates a scan using the scan parameter set up in SI_SetProperty.

Parameters

SIResult SI_ReadImageData(

Byte[] buffer,

UInt32 numberOfLinesToRead,

UInt32 pageNumber,

ref UInt32 numberOfLinesReturned

);

28

buffer [out]A buffer to hold the image data. The size of the buffer

required can be determined from the scanner property

SIP_LINE_WIDTH_IN_BYTES, which gives the length in bytes

of one line. Therefore the buffer size in bytes must be

(numberOfLinesToRead * SIP_LINE_WIDTH_IN_BYTES).

numberOfLinesToRead [in] The number of lines requested.

pageNumber [in] For single-sided scanners, this must always be 0. For

double-sided scanners, set this to 0 to read data from the front

and 1 to read data from the back.

numberOfLinesReturned A reference to a UInt32 variable that will be set to the

number of lines actually returned. This may be less than the

number requested.

Return Values

SIResult.SIR_SUCCESS The function returned successfully with

zero or more lines in the buffer.

SIResult.SIR_BAD_PARAMETER One or more of the parameters were

invalid.

SIResult.SIR_INTERFACE_NOT_OPEN The scanner interface is not open.

SI_OpenInterface was not called.

SIResult.SIR_ENDOFDATA There is no more data for the specified

page.

SIResult.SIR_DEVICE_COMMUNICATION_ERROR There was a low-level error while trying to

communicate with the scanner. The driver

could not communicate with the scanner.

Remarks

The value returned in numberOfLinesReturned may be zero. This does not mean that there is no

more data. It may only mean that the application has caught up to the scanner and there is no new

data available yet. When there is no more image data for the page, SIR_ENDOFDATA will be

29

returned. If the property SIP_EOP_DETECT_ENABLED is supported and is enabled,

SIR_ENDOFDATA will be return when the end of page is detected. In this case,

numberOfLinesReturned will be zero. Further calls to SI_ReadImageData will return a result of

SIR_ENDOFDATA with numberOfLinesReturned set to zero.

If the property SIP_EOP_DETECT_ENABLED is supported and is not enabled, then the scan

length is fixed. That is, SI_ReadImageData will not return SIR_ENDOFDATA until the

number of lines specified in the SIP_SCAN_LENGTH_IN_LINES property is returned.

Therefore, in this case, the application does not need to check for SIR_ENDOFDATA.

For duplex scanners, the front and back pages can be read in any order. It’s not necessary that

you read all lines of one page before you read lines from the other page. For example, you can

read 10 lines from page 0, then 10 lines from page 1, then 10 more lines from page 0 again.

However, lines can only be read once and are read sequentially—you cannot move the “file

pointer” back to re-read lines.

See Also

SI_StartScan, SI_EndScan

SI_EndScan

The SI_EndScan function terminates a scan that was started by calling SI_StartScan.

Parameters

None.

Return Values

SIResult SI_EndScan();

30

SIResult.SIR_SUCCESS The scan was ended successfully.

SIResult.SIR_INTERFACE_NOT_OPEN The scanner interface is not open.

SI_OpenInterface was not called.

SIResult.SIR_SCANNER_BUSY The scanner is busy and cannot feed.

Another process may currently be

scanning.

SIResult.SIR_DEVICE_COMMUNICATION_ERROR There was a low-level error while trying to

communicate with the scanner. The driver

could not communicate with the scanner.

Remarks

The SI_EndScan function may be called anytime after SI_StartScan; it is not necessary to read

all the image data. When called, the scan is immediately stopped. The paper feeding stops. The

paper is not fed out of the scanner. To feed the paper out, call the SI_FeedPaperOut function.

After calling SI_EndScan, the SI_ReadImageData function may no longer be called (until the

next scan).

Calling SI_EndScan while a scan is not is progress does not result in an error.

See Also

SI_StartScan, SI_ReadImageData

SI_Feed

The SI_Feed function feeds the paper a specified distance without performing a scan.

SIResult SI_Feed();

31

Parameters

None.

Return Values

SIResult.SIR_SUCCESS The function performed the feed

successfully.

SIResult.SIR_INTERFACE_NOT_OPEN The scanner interface is not open.

SI_OpenInterface was not called. The

paper status cannot be determined.

SIResult.SIR_SCANNER_BUSY The scanner is busy and cannot feed.

Another process may currently be

scanning.

SIResult.SIR_DEVICE_COMMUNICATION_ERROR There was a low-level error while trying to

communicate with the scanner. The driver

could not communicate with the scanner.

Remarks

The distance and direction of the feed are determined by three properties which must be set

before calling SI_Feed.

SIP_YRESOLUTION The Y resolution is set so that there is some context to the number

of lines specified in SIP_YOFFSET. That is, feeding 100 lines at a

resolution of 300 DPI means to feed the paper 1/3 of an inch.

SIP_YOFFEST This property specifies the number of lines to feed the paper. The

lines are in terms of resolution specified in the

SIP_YRESOLUTION property.

SIP_FEED_DIRECTION This property specifies the direction the paper will be moved. This

property may or may not exist for a given model scanner. If it does

not, then the paper will always feed forward.

32

The SI_Feed function does not return until the paper has been fed the specified distance (or an

error has occurred).

SI_Feed always feeds the length specified regardless of the state of the paper sensor. To feed the

paper until the paper sensor is clear, use SI_FeedPaperOut.

SI_Feed cannot be called between SI_StartScan and SI_EndScan. Attempting to call it at that

time will result in a SIR_SCANNER_BUSY error.

See Also

SI_FeedPaperOut

SI_FeedPaperOut

The SI_FeedPaperOut function feeds the paper until the paper sensor is clear.

Parameters

None.

Return Values

SIResult.SIR_SUCCESS The function performed the feed

successfully.

SIResult.SIR_INTERFACE_NOT_OPEN The scanner interface is not open.

SI_OpenInterface was not called. The

paper status cannot be determined.

SIResult SI_FeedPaperOut();

33

SIResult.SIR_SCANNER_BUSY The scanner is busy and cannot feed.

Another process may currently be

scanning.

SIResult.SIR_DEVICE_COMMUNICATION_ERROR There was a low-level error while trying to

communicate with the scanner. The driver

could not communicate with the scanner.

Remarks

The direction of the feed is determined by one property which must be set before calling

SI_FeedPaperOut.

SIP_FEED_DIRECTION This property specifies the direction the paper will be moved. This

property may or may not exist for a given model scanner. If it does

not, then the paper will always feed forward.

The SI_FeedPaperOut function will not stop feeding exactly when the paper sensor is cleared.

Instead it will feed a bit further to make sure the paper is clear of the scanner mechanism. This

distance depends on the particular model since the distance required to clear a page depends on

the hardware.

If there is no paper detected when SI_FeedPaperOut is first called, SI_FeedPaperOut will still

feed the paper some minimum distance to ensure the paper is clear from the scanner mechanism.

The SI_FeedpaperOut function does not return until the paper has been fed out or until the

maximum feed length has been reached (or an error has occurred). The maximum feed length is

defined as the maximum valid value of the property SIP_YOFFSET.

SI_FeedPaperOut cannot be called between SI_StartScan and SI_EndScan. Attempting to call

it at that time will result in a SIR_SCANNER_BUSY error.

See Also

SI_Feed

34

SI_Diagnostic

The SI_Diagnostic function performs diagnostic tests on the scanner hardware.

Parameters

test [in] An ID value that specifies which test to perform. See the

Remarks section for a list of possible values.

diagInfo [in] An object if type derived from SIDiagInfo. The actual

type of the object passed in depends which test is specified in

the test parameter. This object may contain both input and

output values for the diagnostic test. See the Remarks section

for more info.

Return Values

SIResult.SIR_SUCCESS The test result was returned successfully.

SIResult.SIR_BAD_PARAMETER The test specified was unknown or the

diagInfo parameter was null.

SIResult.SIR_INTERFACE_NOT_OPEN The scanner interface is not open.

SI_OpenInterface was not called.

SIResult.SIR_DEVICE_COMMUNICATION_ERROR The test could not be performed because

there was a low-level error while trying to

communicate with the scanner.

Remarks

SIResult SI_Diagnostic(

SIDiagTest test,

SIDiagInfo diagInfo

);

35

The type of the second parameter diagInfo depends on the test being performed. The following

table lists the valid tests types which must be passed in for each test. The comments also describe

any members which must be set up before calling the function, as well as result values returned

in members.

test dialogInfo Comment
SIDiagTest.

SI_DIAG_HW_PRESENCE

SIDiagHwPresenceInfo Output: the result of the test is returned in

the result member variable. Possible

results are:

 SIDiagResult.SI_DIAG_PASS –

the scanner is connected.

 SIDiagResult.SI_DIAG_FAIL –

the scanner is not connected.
SIDiagTest.

SI_DIAG_READ_PERFORMANCE

SIDiagReadPerfInfo Input: The caller must set the

readLengthInKB member variable to the

data length in KB to read. Valid values are

between 1 and 100 KB.

Output: The total time in microseconds to

read the data from the scanner is returned in

the timeInMicroSec member variable.

The following is a C# example of calling SI_Diagnostic() to do a Read Performance test.

SI_GetEvent

SIDiagReadPerfInfo rpi = new SIDiagReadPerfInfo();

// Specify a 20 KB data length to read.

rpi.readLengthInKB = 20;

// Do the test.

m_scanner.SI_Diagnostic(SIDiagTest.SI_DIAG_READ_PERFORMANCE, rpi);

// Display the result.

MessageBox.Show("The time to read " +

 rpi.readLengthInKB + " KB was " +

 rpi.timeInMicroSec + " us.");

36

The SI_GetEvent function will interpret a USB interrupt code and translate it into a bit-flag

indicating the event or events that occurred. This function is normally used only by a driver that

handles USB interrupt events, such as a Windows STI driver. Applications will not normally call

it. If you’re writing an application, you can ignore this function.

Parameters

eventInfo [in-out] An SIEventInfo object. The eventDataSize and

eventData structure fields must be filled out before passing it

to SI_GetEvent. See Remarks for more detail.

Return Values

SIResult.SIR_SUCCESS The event code was recognized and

successfully converted to test. The

eventName field of the eventInfo structure

was filled with the event name.

SIResult.SIR_BAD_PARAMETER The eventInfo parameter was null.

SIResult.SIR_INTERFACE_NOT_OPEN The scanner interface is not open.

SI_OpenInterface has not been called.

Remarks

When an event occurs in the scanner, such as a button press or paper sensor trigger, the scanner

will send a USB interrupt to the host computer. Included in the interrupt message may be one or

more bytes that indicate which event occurred. This information is not standard; it can be unique

to the scanner. Thus if you are writing a driver to handle this interrupt, you may not know which

scanner event occurred.

SIResult SI_GetEvent(

SIEventInfo eventInfo

);

37

The SI_GetEvent function will translate the interrupt data into one or more bit flags indicating

which event occurred. To call this function, you must pass an SIEventInfo object. Its structure is

defined essentially as:

The maximum size of the eventData array is 20 bytes.

The caller must copy the data from the USB interrupt into the eventData array and also set the

eventDataSize field to the number of bytes in that array. If SI_GetEvent returns successfully, the

eventFlags field will have bits flags set indicating which event or events occurred. Possible

bitflags set are defined in SIEventInfo and are:

SIEventInfo.SIEVT_PAPER_IN The paper sensor was triggered. This indicates

that the paper was inserted.
SIEventInfo.SIEVT_BUTTON_DOWN The first scan button was pressed.
SIEventInfo.SIEVT_BUTTON2_DOWN The second scan button was pressed.
SIEventInfo.SIEVT_BUTTON3_DOWN The third scan button was pressed.

If the event data was not recognized, then the eventFlags field will be returned as 0. Some

scanners do not support USB interrupts. In this case, the eventFlags field will be returned as 0.

SI_Reset

The SI_Reset function resets the scanner to a known state.

public ref class SIEventInfo

{

 /// [in] The size in bytes of the data in the eventData array. (MAX 20)

Byte eventDataSize;

/// [in] The data bytes return by the scanner in the USB interrupt phase.

Byte[] eventData;

/// [out] Bit flags that indicate which event(s) occurred.

UInt32 eventFlags;

};

SIResult SI_Reset();

38

Parameters

None.

Return Values

SIResult.SIR_SUCCESS The scanner was reset successfully.

SIResult.SIR_INTERFACE_NOT_OPEN The scanner interface is not open.

SI_OpenInterface was not called.

SIResult.SIR_DEVICE_COMMUNICATION_ERROR The scanner could not be reset because

there was a low-level error while trying to

communicate with the scanner.

Remarks

SI_Reset should be used with caution. It will reset the scanner hardware regardless of whether a

scan is in progress, either in the current process or a different process. Resetting the hardware

will abort any scan or feed in progress.

In addition, all scan properties are set to their default values.

SI_GetLastError

The SI_GetLastError function returns the result of the most recently called API function.

Parameters

SIResult SI_GetLastError();

39

None.

Return Values

The result that was returned by the most recent API function that was called.

Remarks

You typically do not need to use SI_GetLastError since the result codes are returned from the

functions themselves. SI_GetLastError is included for convenience and may be useful depending

on how your application is structured.

The interface does not need to be open to call SI_GetLastErrorText.

See Also

 SI_GetLastErrorText

SI_GetLastErrorText

The SI_GetLastError function returns the result of the most recently called API function.

Parameters

errorText [out] A reference to a string which upon return will describe

the last API result that occurred.

SIResult SI_GetLastErrorText(ref string errorText);

40

Return Values

SIResult.SIR_SUCCESS The text string was returned successfully.

Remarks

You typically do not need to use SI_GetLastErrorText since the result codes are returned from

the functions themselves. SI_GetLastErrorText is included for convenience and may be useful

for displaying error messages.

The interface does not need to be open to call SI_GetLastErrorText.

See Also

 SI_GetLastError

	Introduction
	ScannerMng.dll
	P/Invoke
	Requirements
	Sample Applications

	Developing With the Managed API
	The SIScanner class
	Open the Interface
	Calibrate the Scanner
	Properties
	Check for Paper
	Scan a Page
	End the Scan
	Close the Interface

	Function Reference
	SI_OpenInterface
	SI_CloseInterface
	SI_IsCalibrated
	SI_Calibrate
	SI_Clean
	SI_GetScannerStatus
	SI_GetPaperStatus
	SI_GetButtonStatus
	SI_GetProperty
	SI_SetProperty
	SI_StartScan
	SI_ReadImageData
	SI_EndScan
	SI_Feed
	SI_FeedPaperOut
	SI_Diagnostic
	SI_GetEvent
	SI_Reset
	SI_GetLastError
	SI_GetLastErrorText

